U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 249 results

Potassium Glycyrrhetinate (CAS no. 85985-61-1) is the potassium salt of Glycyrrhetinic Acid. Potassium Glycyrrhetinate is also known as Olean-12-En-29-Oic Acid, 3-Hydroxy-1, 1-Oxo-, Monopotassium Salt. Potassium Glycyrrhetinate functions as a flavoring agent and skin-conditioning agent—miscellaneous in cosmetic products.
Sesamin is a naturally occurring compound found in sesame oil and in the bark and fruit of certain plant species. SESAMIN, (±)- is a racemic dl-form. The dl-form is also known as fagarol, and may be isolated from the bark of various fagara species. Sesamin, either as the d-form or the dl-form, has now been found to possess psychotropic activity, i.e., administration of appropriate dosages to a human or animal subject elicits a psychotropic response. Sesamin is catered to be a nutritional supplement that confers antioxidant and antiinflammatory effects (if touting its health properties) or possibly being an estrogen receptor modulator and fat burner (if targeting athletes or persons wishing to lose weight). Sesamin has a few mechanisms, and when looking at it holistically it can be summed up as a fatty acid metabolism modifier. It appears to inhibit an enzyme known as delta-5-desaturase (Δ5-desaturase) which is a rate-limiting enzyme in fatty acid metabolism; inhibiting this enzyme results in lower levels of both eicosapentaenoic acid (EPA, one of the two fish oil fatty acids) as well as arachidonic acid, and this mechanism appears to be relevant following oral ingestion. The other main mechanism is inhibiting a process known as Tocopherol-ω-hydroxylation, which is the rate-limiting step in the metabolism of Vitamin E; by inhibiting this enzyme, sesamin causes a relative increase of vitamin E in the body but particularly those of the gamma subset (γ-tocopherol and γ-tocotrienol) and this mechanism has also been confirmed to be active following oral ingestion. Sesamin is a potent and specific inhibitor of delta 5 desaturases in polyunsaturated fatty acid biosynthesis. Sesamin inhibits particular CYP3A enzymes that are involved in vitamin E metabolism, where the enzyme initially ω-hydroxylates vitamin E (required step) and then the rest of vitamin E is subject to fat oxidation. By inhibiting this step, sesamin causes an increase in circulating and organ concentrations of vitamin E. Sesamin is thought to have PPARα activating potential in the liver, but it is uncertain how much practical relevance this has in humans due to this being a mechanism that differs between species.
Status:
Possibly Marketed Outside US
Source:
Hepad S5 by YOUNGJIN Korean Medicine Clinic
(2021)
Source URL:
First approved in 2021
Source:
Hepad S5 by YOUNGJIN Korean Medicine Clinic
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Honokiol is a biphenolic natural product isolated from the bark and leaves of Magnolia plant spp. Honokiol possesses anti-carcinogenic, anti-inflammatory, anti-oxidative, anti-angiogenic as well as the inhibitory effect on malignant transformation of papillomas to carcinomas in vitro and in vivo animal models without any appreciable toxicity. Honokiol affects multiple signaling pathways, molecular and cellular targets including nuclear factor-κB (NF-κB), STAT3, epidermal growth factor receptor (EGFR), cell survival signaling, cell cycle, cyclooxygenase and other inflammatory mediators, etc. Honokiol can permeate the blood-brain barrier and the blood-cerebrospinal fluid to increase its bioavailability in neurological tissues. Diverse studies have provided evidence on the neuroprotective effect of honokiol in the central nervous system, due to its potent antioxidant activity, and amelioration of the excitotoxicity mainly related to the blockade of glutamate receptors and reduction in neuroinflammation. Honokiol can attenuate neurotoxicity exerted by abnormally aggregated Abeta in Alzheimer's disease. Honokiol is being developed by Huons as HL tablet for the treatment of alcoholic and non-alcoholic fatty liver.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bakuchiol is a prenylated phenolic monoterpene isolated from Psoralea corylifolia Leguminosae, widely used in Chinese and Indian traditional medicine for the treatment of premature ejaculation, knee pain, alopecia spermatorrhea, enuresis, backache, pollakiuria, vitiligo, callus, and psoriasis. Bakuchiol is shown to have anti-microbial, anti-inflammatory, anti-oxidative, anti-osteoporosis, and anti-depression or anti-stress activities The anti-cancer potential of bakuchiol has been. Bakuchiol inhibits liver cancer cell growth through inducing S phase arrest, caspase 9/3 activation, p53 and Bax up-regulation, as well as Bcl-2 down-regulation. It also inhibits human carboxylesterase 2, which is commonly expressed in tumor tissue and involved in the metabolism of endogenous lipids and drugs.
mixture
Status:
First approved in 1989

Class:
MIXTURE



Norgestimate is a steroidal progestin of the 19-nortestosterone group that is used in combination with ethinylestradiol as an oral contraceptive and for treatment of acne. and in combination with estradiol in menopausal hormone replacement therapy. Norgestimate shows high selectivity for the progesterone receptor and low androgenic activity.
Naldemedine (Symproic) is an opioid antagonist indicated for the treatment of opioid-induced constipation (OIC) in adult patients with chronic non-cancer pain. Naldemedine is an opioid antagonist with binding affinities for mu-, delta-, and kappa-opioid receptors. Naldemedine functions as a peripherally-acting mu-opioid receptor antagonist in tissues such as the gastrointestinal tract, thereby decreasing the constipating effects of opioids. Naldemedine is a derivative of naltrexone to which a side chain has been added that increases the molecular weight and the polar surface area, thereby reducing its ability to cross the blood-brain barrier (BBB). Naldemedine is also a substrate of the P-glycoprotein (P-gp) efflux transporter. Based on these properties, the CNS penetration of naldemedine is expected to be negligible at the recommended dose levels, limiting the potential for interference with centrally-mediated opioid analgesia. Naldemedine was approved in 2017 in both the US and Japan for the treatment of Opioid-induced Constipation.
Cobimetinib is an orally active, potent and highly selective small molecule inhibiting mitogen-activated protein kinase kinase 1 (MAP2K1 or MEK1), and central components of the RAS/RAF/MEK/ERK signal transduction pathway. It has been approved in Switzerland and the US, in combination with vemurafenib for the treatment of patients with unresectable or metastatic BRAF V600 mutation-positive melanoma. Preclinical studies have demonstrated that Cobimetinib is effective in inhibiting the growth of tumor cells bearing a BRAF mutation, which has been found to be associated with many tumor types. A threonine-tyrosine kinase and a key component of the RAS/RAF/MEK/ERK signalling pathway that is frequently activated in human tumors, MEK1 is required for the transmission of growth-promoting signals from numerous receptor tyrosine kinases. Cobimetinib is used in combination with vemurafenib because the clinical benefit of a BRAF inhibitor is limited by intrinsic and acquired resistance. Reactivation of the MAPK pathway is a major contributor to treatment failure in BRAF-mutant melanomas, approximately ~80% of melanoma tumors becomes BRAF-inhibitor resistant due to reactivation of MAPK signalling. BRAF-inhibitor resistant tumor cells are sensitive to MEK inhibition, therefore cobimetinib and vemurafenib will result in dual inhibition of BRAF and its downstream target, MEK. Cobimetinib specifically binds to and inhibits the catalytic activity of MEK1, resulting in inhibition of extracellular signal-related kinase 2 (ERK2) phosphorylation and activation and decreased tumor cell proliferation. Cobimetinib and vemurafenib target two different kinases in the RAS/RAF/MEK/ERK pathway. Cobimetinib is used for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation. Cobimetinib is used in combination with vemurafenib, a BRAF inhibitor. Cobimetinib is marketed under the trade name Cotellic.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Canagliflozin (INN, trade name Invokana or Sulisent) is a drug of the gliflozin class. It was developed by Mitsubishi Tanabe Pharma and is marketed under license by Janssen, a division of Johnson & Johnson. Canagliflozin is an antidiabetic drug used to improve glycemic control in people with type 2 diabetes. Sodium-glucose co-transporter 2 (SGLT2), expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. Canagliflozin is an inhibitor of SGLT2. By inhibiting SGLT2, canagliflozin reduces reabsorption of filtered glucose and lowers the renal threshold for glucose (RTG), and thereby increases urinary glucose excretion. In extensive clinical trials, canagliflozin produced a consistent dose-dependent reduction in HbA1c of 0.77% to 1.16% when administered as monotherapy, combination with metformin, combination with metformin and a sulfonylurea, combination with metformin and pioglitazone, and in combination with insulin from a baselines of 7.8% to 8.1%, in combination with metformin, or in combination with metformin and a sulfonylurea. When added to metformin, canagliflozin 100 mg was shown to be non-inferior to both sitagliptin 100 mg and glimepiride in reductions on HbA1c at one year, whilst canagliflozin 300 mg successfully demonstrated statistical superiority over both sitagliptin and glimiperide in HbA1c reductions. Secondary efficacy endpoint of superior body weight reduction and blood pressure reduction (versus sitagliptin and glimiperide)) were observed as well. Canagliflozin produces beneficial effects on HDL cholesterol whilst increasing LDL cholesterol to produce no change in total cholesterol.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Canagliflozin (INN, trade name Invokana or Sulisent) is a drug of the gliflozin class. It was developed by Mitsubishi Tanabe Pharma and is marketed under license by Janssen, a division of Johnson & Johnson. Canagliflozin is an antidiabetic drug used to improve glycemic control in people with type 2 diabetes. Sodium-glucose co-transporter 2 (SGLT2), expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. Canagliflozin is an inhibitor of SGLT2. By inhibiting SGLT2, canagliflozin reduces reabsorption of filtered glucose and lowers the renal threshold for glucose (RTG), and thereby increases urinary glucose excretion. In extensive clinical trials, canagliflozin produced a consistent dose-dependent reduction in HbA1c of 0.77% to 1.16% when administered as monotherapy, combination with metformin, combination with metformin and a sulfonylurea, combination with metformin and pioglitazone, and in combination with insulin from a baselines of 7.8% to 8.1%, in combination with metformin, or in combination with metformin and a sulfonylurea. When added to metformin, canagliflozin 100 mg was shown to be non-inferior to both sitagliptin 100 mg and glimepiride in reductions on HbA1c at one year, whilst canagliflozin 300 mg successfully demonstrated statistical superiority over both sitagliptin and glimiperide in HbA1c reductions. Secondary efficacy endpoint of superior body weight reduction and blood pressure reduction (versus sitagliptin and glimiperide)) were observed as well. Canagliflozin produces beneficial effects on HDL cholesterol whilst increasing LDL cholesterol to produce no change in total cholesterol.
Dabigatran (Pradaxa, Prazaxa) is an anticoagulant medication that can be taken by mouth. FDA approved on October 19, 2010. Dabigatran directly inhibits thrombin in a concentration-dependent, reversible, specific, and competitive manner which results in a prolongation of aPTT (partial thromboplastin time), ECT (Ecarin clotting time), and TT (thrombin time). It may increase INR but this laboratory parameter is relatively insensitive to the activity of dabigatran. Dabigatran is indicated for the prevention of venous thromboembolic events in patients who have undergone elective hip or knee replacement surgery (based on RE-NOVATE, RE-MODEL, and RE-MOBILIZE trials). In 2010, it was approved in the US and Canada for prevention of stroke and systemic embolism in patients with atrial fibrillation (approval based on the RE-LY trial). Contraindications: severe renal impairment (CrCL < 30 ml/min); haemorrhagic manifestations, bleeding diathesis or spontaneous or pharmacologic impairment of haemostasis; lesions at risk of clinically significant bleeding (e.g. extensive cerebral infarction (haemorrhagic or ischemic) in the last 6 months, active peptic ulcer disease); concomitant treatment with P-glycoprotein inhibitors (e.g. oral ketoconazole, verapamil); and those with known hypersensitivity to dabigatran, dabigatran etexilate or any ingredient used in the formulation or component of the container. As of December 2012, dabigatran is contraindicated in patients with mechanical prosthetic heart valves.