U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1331 - 1340 of 2052 results

Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Ondansetron (ZOFRAN®) is a selective 5-HT3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by radiotherapy, anesthesia, surgery or cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties. While its mechanism of action has not been fully characterized, ondansetron is not a dopamine-receptor antagonist. It is not certain whether ondansetron's antiemetic action is mediated centrally, peripherally, or in both sites. However, cytotoxic chemotherapy appears to be associated with release of serotonin from the enterochromaffin cells of the small intestine. The released serotonin may stimulate the vagal afferents through the 5-HT3 receptors and initiate the vomiting reflex.
Ondansetron (ZOFRAN®) is a selective 5-HT3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by radiotherapy, anesthesia, surgery or cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties. While its mechanism of action has not been fully characterized, ondansetron is not a dopamine-receptor antagonist. It is not certain whether ondansetron's antiemetic action is mediated centrally, peripherally, or in both sites. However, cytotoxic chemotherapy appears to be associated with release of serotonin from the enterochromaffin cells of the small intestine. The released serotonin may stimulate the vagal afferents through the 5-HT3 receptors and initiate the vomiting reflex.
Pravastatin (marketed as Pravachol or Selektine) is a member of the drug class of statins, used in combination with diet, exercise, and weight loss for lowering cholesterol and preventing cardiovascular disease. Pravastatin acts as a lipoprotein-lowering drug through two pathways. In the major pathway, pravastatin inhibits the function of hydroxymethylglutaryl-CoA (HMG-CoA) reductase. As a reversible competitive inhibitor, pravastatin sterically hinders the action of HMG-CoA reductase by occupying the active site of the enzyme. Taking place primarily in the liver, this enzyme is responsible for the conversion of HMG-CoA to mevalonate in the rate-limiting step of the biosynthetic pathway for cholesterol. Pravastatin also inhibits the synthesis of very-low-density lipoproteins, which are the precursor to low-density lipoproteins (LDL). These reductions increase the number of cellular LDL receptors, thus LDL uptake increases, removing it from the bloodstream. Pravastatin is primarily used for the treatment of dyslipidemia and the prevention of cardiovascular disease. It is recommended to be used only after other measures, such as diet, exercise, and weight reduction, have not improved cholesterol levels. The evidence for the use of pravastatin is generally weaker than for other statins. The antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT), failed to demonstrate a difference in all-cause mortality or nonfatal myocardial infarction/fatal coronary heart disease rates between patients receiving pravastatin 40 mg daily (a common starting dose) and those receiving usual care. Pravastatin is generally well tolerated; adverse reactions have usually been mild and transient. In 4-month-long placebo-controlled trials, 1.7% of Pravastatin-treated patients and 1.2% of placebo-treated patients were discontinued from treatment because of adverse experiences attributed to study drug therapy; this difference was not statistically significant.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.

Showing 1331 - 1340 of 2052 results