{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2005)
Source:
ANDA077226
(2005)
Source URL:
First approved in 1978
Source:
NDA017962
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Bromocriptine is an ergot derivative with potent dopamine receptor agonist activity, which activates post-synaptic dopamine receptors. Bromocriptine is indicated for the treatment of dysfunctions associated with hyperprolactinemia. Bromocriptine therapy is indicated in the treatment of acromegaly and in the treatment of the signs and symptoms of idiopathic or postencephalitic Parkinson’s disease. It is approved as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. Some commonly reported adverse reactions include nausea, fatigue, dizziness, vomiting and headache. Bromocriptine may interact with dopamine antagonists, butyrophenones and certain other agents.
Status:
US Approved Rx
(2003)
Source:
ANDA074732
(2003)
Source URL:
First approved in 1977
Source:
NOLVADEX by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tamoxifen (brand name Nolvadex), is selective estrogen receptor modulators (SERM) with tissue-specific activities for the treatment and prevention of estrogen receptor positive breast cancer. Tamoxifen itself is a prodrug, having relatively little affinity for its target protein, the estrogen receptor (ER). It is metabolized in the liver by the cytochrome P450 isoform CYP2D6 and CYP3A4 into active metabolites such as 4-hydroxytamoxifen (4-OHT) (afimoxifene) and N-desmethyl-4-hydroxytamoxifen (endoxifen) which have 30–100 times more affinity with the ER than tamoxifen itself. These active metabolites compete with estrogen in the body for binding to the ER. In breast tissue, 4-OHT acts as an ER antagonist so that transcription of estrogen-responsive genes is inhibited. Tamoxifen has 7% and 6% of the affinity of estradiol for the ERα and ERβ, respectively, whereas 4-OHT has 178% and 338% of the affinity of estradiol for the ERα and ERβ. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER)-positive (ER+) breast cancer in pre- and post-menopausal women. Additionally, it is the most common hormone treatment for male breast cancer. Patients with variant forms of the gene CYP2D6 (also called simply 2D6) may not receive full benefit from tamoxifen because of too slow metabolism of the tamoxifen prodrug into its active metabolites. Tamoxifen is used as a research tool to trigger tissue-specific gene expression in many conditional expression constructs in genetically modified animals including a version of the Cre-Lox recombination technique. Tamoxifen has been shown to be effective in the treatment of mania in patients with bipolar disorder by blocking protein kinase C (PKC), an enzyme that regulates neuron activity in the brain. Researchers believe PKC is over-active during the mania in bipolar patients.
Status:
US Approved Rx
(2003)
Source:
ANDA074732
(2003)
Source URL:
First approved in 1977
Source:
NOLVADEX by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tamoxifen (brand name Nolvadex), is selective estrogen receptor modulators (SERM) with tissue-specific activities for the treatment and prevention of estrogen receptor positive breast cancer. Tamoxifen itself is a prodrug, having relatively little affinity for its target protein, the estrogen receptor (ER). It is metabolized in the liver by the cytochrome P450 isoform CYP2D6 and CYP3A4 into active metabolites such as 4-hydroxytamoxifen (4-OHT) (afimoxifene) and N-desmethyl-4-hydroxytamoxifen (endoxifen) which have 30–100 times more affinity with the ER than tamoxifen itself. These active metabolites compete with estrogen in the body for binding to the ER. In breast tissue, 4-OHT acts as an ER antagonist so that transcription of estrogen-responsive genes is inhibited. Tamoxifen has 7% and 6% of the affinity of estradiol for the ERα and ERβ, respectively, whereas 4-OHT has 178% and 338% of the affinity of estradiol for the ERα and ERβ. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER)-positive (ER+) breast cancer in pre- and post-menopausal women. Additionally, it is the most common hormone treatment for male breast cancer. Patients with variant forms of the gene CYP2D6 (also called simply 2D6) may not receive full benefit from tamoxifen because of too slow metabolism of the tamoxifen prodrug into its active metabolites. Tamoxifen is used as a research tool to trigger tissue-specific gene expression in many conditional expression constructs in genetically modified animals including a version of the Cre-Lox recombination technique. Tamoxifen has been shown to be effective in the treatment of mania in patients with bipolar disorder by blocking protein kinase C (PKC), an enzyme that regulates neuron activity in the brain. Researchers believe PKC is over-active during the mania in bipolar patients.
Status:
US Approved Rx
(2003)
Source:
ANDA074732
(2003)
Source URL:
First approved in 1977
Source:
NOLVADEX by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tamoxifen (brand name Nolvadex), is selective estrogen receptor modulators (SERM) with tissue-specific activities for the treatment and prevention of estrogen receptor positive breast cancer. Tamoxifen itself is a prodrug, having relatively little affinity for its target protein, the estrogen receptor (ER). It is metabolized in the liver by the cytochrome P450 isoform CYP2D6 and CYP3A4 into active metabolites such as 4-hydroxytamoxifen (4-OHT) (afimoxifene) and N-desmethyl-4-hydroxytamoxifen (endoxifen) which have 30–100 times more affinity with the ER than tamoxifen itself. These active metabolites compete with estrogen in the body for binding to the ER. In breast tissue, 4-OHT acts as an ER antagonist so that transcription of estrogen-responsive genes is inhibited. Tamoxifen has 7% and 6% of the affinity of estradiol for the ERα and ERβ, respectively, whereas 4-OHT has 178% and 338% of the affinity of estradiol for the ERα and ERβ. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER)-positive (ER+) breast cancer in pre- and post-menopausal women. Additionally, it is the most common hormone treatment for male breast cancer. Patients with variant forms of the gene CYP2D6 (also called simply 2D6) may not receive full benefit from tamoxifen because of too slow metabolism of the tamoxifen prodrug into its active metabolites. Tamoxifen is used as a research tool to trigger tissue-specific gene expression in many conditional expression constructs in genetically modified animals including a version of the Cre-Lox recombination technique. Tamoxifen has been shown to be effective in the treatment of mania in patients with bipolar disorder by blocking protein kinase C (PKC), an enzyme that regulates neuron activity in the brain. Researchers believe PKC is over-active during the mania in bipolar patients.
Status:
US Approved Rx
(1998)
Source:
ANDA075150
(1998)
Source URL:
First approved in 1975
Source:
NDA017533
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clonazepam, a benzodiazepine, is used primarily as an anticonvulsant in the treatment of absence seizures, petit mal variant seizures (Lennox-Gastaut syndrome), akinetic and myoclonic seizures, and nocturnal myoclonus. Klonopin is the brand name for Clonazepam, an anxiolytic and anticonvulsant. The precise mechanism by which clonazepam exerts its antiseizure
and antipanic effects is unknown, although it is believed to be related to its ability to
enhance the activity of gamma aminobutyric acid (GABA), the major inhibitory
neurotransmitter in the central nervous system. Allosteric interactions between central benzodiazepine receptors and gamma-aminobutyric acid (GABA) receptors potentiate the effects of GABA. As GABA is an inhibitory neurotransmitter, this results in increased inhibition of the ascending reticular activating system. Benzodiazepines, in this way, block the cortical and limbic arousal that occurs following stimulation of the reticular pathways.
Status:
US Approved Rx
(2014)
Source:
NDA205579
(2014)
Source URL:
First approved in 1974
Source:
NDA017443
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dantrolene is a drug which was approved by FDA for the treatment of chronic spasticity and malignant hyperthermia (a rare life-threatening clinical syndrome). Dantrolene effect was shown both in vivo and in vitro and proved to be mediated by interaction with Ryanodine receptor 1. The drug has a potential for hepatotoxicity and should be used as indicated in the label.