U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 91 - 100 of 776 results

Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tacrolimus, previously known as FK506, is the active ingredient in Prograf. Tacrolimus is a macrolide immunosuppressant produced by Streptomyces tsukubaensis. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus inhibits T-lymphocyte activation, although the exact mechanism of action is not known. Experimental evidence suggests that tacrolimus binds to an intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12, calcium, calmodulin, and calcineurin is then formed and the phosphatase activity of calcineurin inhibited. This effect may prevent the dephosphorylation and translocation of nuclear factor of activated T-cells (NF-AT), a nuclear component thought to initiate gene transcription for the formation of lymphokines (such as interleukin-2, gamma interferon). The net result is the inhibition of T-lymphocyte activation (i.e., immunosuppression). Prograf is indicated for the prophylaxis of organ rejection in patients receiving allogeneic liver transplants, kidney transplants, heart transplants. It has also been used in a topical preparation in the treatment of severe atopic dermatitis.
Status:
First approved in 1994

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Rocuronium (brand names Zemuron, Esmeron) is an aminosteroid non-depolarizing neuromuscular blocker or muscle relaxant used in modern anesthesia to facilitate endotracheal intubation by providing skeletal muscle relaxation, most commonly required for surgery or mechanical ventilation. Rocuronium bromide is a nondepolarizing neuromuscular blocking agent with a rapid to intermediate onset depending on dose and intermediate duration. It acts by competing for cholinergic receptors at the motor end-plate. This action is antagonized by acetylcholinesterase inhibitors, such as neostigmine and edrophonium. Most common adverse reactions are transient hypotension and hypertension.
Fluvastatin is an antilipemic agent that competitively inhibits hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase. Fluvastatin is marketed under the trade names Lescol, Canef, Vastin. LESCOL/LESCOL XL is an HMG-CoA reductase inhibitor (statin) indicated as an adjunctive therapy to diet to: Reduce elevated TC, LDL-C, Apo B, and TG, and to increase HDL-C in adult patients with primary hypercholesterolemia and mixed dyslipidemia Reduce elevated TC, LDL-C, and Apo B levels in boys and post-menarchal girls, 10 to 16 years of age, with heterozygous familial hypercholesterolemia after failing an adequate trial of diet therapy Reduce the risk of undergoing revascularization procedures in patients with clinically evident CHD Slow the progression of atherosclerosis in patients with CHD. Fluvastatin selectively and competitively inhibits the hepatic enzyme hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase. HMG-CoA reductase is responsible for converting HMG-CoA to mevalonate, the rate-limiting step in cholesterol biosynthesis. Inhibition results in a decrease in hepatic cholesterol levels which stimulates the synthesis of LDL receptors and increases hepatic uptake of LDL cholesterol. The end result is decreased levels of plasma total and LDL cholesterol.
Granisetron is a selective inhibitor of type 3 serotonergic (5-HT3) receptors. The drug is structurally and pharmacologically related to ondansetron, another selective inhibitor of 5-HT3 receptors. The serontonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery, and centrally in the chemoreceptor trigger zone of the area postrema. The temporal relationship between the emetogenic action of emetogenic drugs and the release of serotonin, as well as the efficacy of antiemetic agents suggest that chemotherapeutic agents release serotonin from the enterochromaffin cells of the small intestine by causing degenerative changes in the GI tract. The serotonin then stimulates the vagal and splanchnic nerve receptors that project to the medullary vomiting center, as well as the 5-HT3 receptors in the area postrema, thus initiating the vomiting reflex, causing nausea and vomiting. Granisetron is a potent, selective antagonist of 5-HT3 receptors. The antiemetic activity of the drug is brought about through the inhibition of 5-HT3 receptors present both centrally (medullary chemoreceptor zone) and peripherally (GI tract). This inhibition of 5-HT3 receptors in turn inhibits the visceral afferent stimulation of the vomiting center, likely indirectly at the level of the area postrema, as well as through direct inhibition of serotonin activity within the area postrema and the chemoreceptor trigger zone. Granisetron is used for the prevention of nausea and vomiting associated with initial and repeat courses of emetogenic cancer therapy (including high dose cisplatin), postoperation, and radiation (including total body irradiation and daily fractionated abdominal radiation).

Class (Stereo):
CHEMICAL (ACHIRAL)



Loratadine is a derivative of azatadine and a second-generation histamine H1 receptor antagonist used in the treatment of allergic rhinitis and urticaria. Unlike most classical antihistamines (histamine H1 antagonists) it lacks central nervous system depressing effects such as drowsiness. Loratadine competes with free histamine and exhibits specific, selective peripheral H1 antagonistic activity. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms (eg. nasal congestion, watery eyes) brought on by histamine. Loratadine has low affinity for cholinergic receptors and does not exhibit any appreciable alpha-adrenergic blocking activity in-vitro. Loratadine also appears to suppress the release of histamine and leukotrienes from animal mast cells, and the release of leukotrienes from human lung fragments, although the clinical importance of this is unknown.
Status:
First approved in 1992

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Terbinafine (brand name Lamisil, Terbisil, Terboderm and others) is an antifungal medication used to treat ringworm and fungal nail infections. Terbinafine inhibits ergosterol synthesis by inhibiting squalene epoxidase, an enzyme that is part of the fungal cell membrane synthesis pathway. Because terbinafine prevents the conversion of squalene to lanosterol, ergosterol cannot be synthesized. This is thought to change cell membrane permeability, causing fungal cell lysis. Many side effects and adverse drug reactions have been reported with oral terbinafine hydrochloride possibly due to its extensive biodistribution and the often extended durations involved in antifungal treatment (longer than two months).
Finasteride is a synthetic 4-azasteroid compound. This drug is a competitive and specific inhibitor of Type II 5a-reductase, an intracellular enzyme that converts the androgen testosterone into 5α-dihydrotestosterone (DHT). Two distinct isozymes are found in mice, rats, monkeys, and humans: Type I and II. Each of these isozymes is differentially expressed in tissues and developmental stages. In humans, Type I 5a-reductase is predominant in the sebaceous glands of most regions of skin, including scalp, and liver. Type I 5a-reductase is responsible for approximately one-third of circulating DHT. The Type II 5a-reductase isozyme is primarily found in prostate, seminal vesicles, epididymides, and hair follicles as well as liver, and is responsible for two-thirds of circulating DHT. Although finasteride is 100-fold more selective for type II 5a-reductase than for the type I isoenzyme, chronic treatment with this drug may have some effect on type I 5a-reductase. Finasteride is used for the treatment of symptomatic benign prostatic hyperplasia (BPH) in men with an enlarged prostate to: Improve symptoms, reduce the risk of acute urinary retention, reduce the risk of the need for surgery including transurethral resection of the prostate. Also used for the stimulation of regrowth of hair in men with mild to moderate androgenetic alopecia (male pattern alopecia, hereditary alopecia, common male baldness). Finasteride is sold under the brand names Proscar and Propecia among others.
Clarithromycin is an antibacterial drug which is used either in combination with lansoprazole and amoxicillin (Prevpac), in combination with omeprazole and amoxicillin (Omeclamox) or alone (Biaxin) for the treatment of broad range of infections. The drug exerts its action by binding to 23s rRNA (with nucleotides in domains II and V). The binding leads to the protein synthesis inhibition and the cell death.
Etodolac is an anti-inflammatory agent with analgesic and antipyretic properties. It is used to treat osteoarthritis, rheumatoid arthritis and control acute pain. The therapeutic effects of etodolac are achieved via inhibition of the synthesis of prostaglandins involved in fever, pain, swelling and inflammation. Etodolac is administered as a racemate. As with other NSAIDs, the S-form has been shown to be active while the R-form is inactive. Both enantiomers are stable and there is no evidence of R- to S- conversion in vivo. Similar to other NSAIDs, the anti-inflammatory effects of etodolac result from inhibition of the enzyme cycooxygenase (COX). This decreases the synthesis of peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of the COX enzyme active site and prevents its substrate, arachidonic acid, from entering the active site. Etodolac was previously thought to be a non-selective COX inhibitor, but it is now known to be 5 – 50 times more selective for COX-2 than COX-1. Antipyresis may occur by central action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss. Etodolac is used for acute and long-term management of signs and symptoms of osteoarthritis and rheumatoid arthritis, as well as for the management of pain. Lodine, the brand-name formulation of the drug, has been discontinued in the United States, and only the generic form of etodolac is available.