U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 641 - 650 of 1079 results

Bromfenac is a topical, nonsteroidal anti-inflammatory drug (NSAID) for ophthalmic use. It is indicated for the treatment of postoperative inflammation and reduction of ocular pain in patients who have undergone cataract surgery. The mechanism of its action is thought to be due to its ability to block prostaglandin synthesis by inhibiting cyclooxygenase 1 and 2. The most commonly reported adverse reactions in 3 to 8% of patients were anterior chamber inflammation, foreign body sensation, eye pain, photophobia and vision blurred.
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Lamivudine is a reverse transcriptase inhibitor used alone or in combination with other classes of anti-human immunodeficiency virus (HIV) drugs in the treatment of HIV infection. This molecule has two stereo-centers, thus giving rise to four stereoisomers: (+/-)-cis-lamivudine and (+/-)-trans-lamivudine. The latter is considered to be impurity of the pharmaceutically active isomer, (-)-cis-lamivudine.
Lamivudine is a reverse transcriptase inhibitor used alone or in combination with other classes of anti-human immunodeficiency virus (HIV) drugs in the treatment of HIV infection. This molecule has two stereo-centers, thus giving rise to four stereoisomers: (+/-)-cis-lamivudine and (+/-)-trans-lamivudine. The latter is considered to be impurity of the pharmaceutically active isomer, (-)-cis-lamivudine.
Nalmefene is the first medication approved for alcoholism with the primary goal of reducing alcohol intake in an as needed approach. Nalmefene received a marketing authorization valid throughout the European Union on February 25, 2013 and is under development in Asia. Nalmefene is an opioid system modulator with a distinct μ, δ, and κ receptor profile. In vitro studies have demonstrated that Nalmefene is a selective opioid receptor ligand with antagonist activity at the μ and δ receptors and partial agonist activity at the κ receptor. In vivo studies have demonstrated that nalmefene reduces alcohol consumption, possibly by modulating cortico-mesolimbic functions. In the US, immediate-release injectable nalmefene was approved in 1995 as an antidote for opioid overdose. It was sold under the trade name Revex. The product was discontinued by its manufacturer around 2008. Currently Nalmefene is sold under the trade name Selincro. Selincro is indicated for the reduction of alcohol consumption in adult patients with alcohol dependence who have a high drinking-risk level, without physical withdrawal symptoms and who do not require immediate detoxification.