{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
First approved in 1992
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Temafloxacin (marketed by Abbott Laboratories as Omniflox) is almost completely absorbed from the gastrointestinal tract, with an absolute bioavailability of approximately 93% and is not greatly affected by food. The time to reach peak concentrations ranges between 2 and 3 hours. In addition to the broad spectrum of activity all fluoroquinolones have against gram-negative pathogens, temafloxacin has improved antimicrobial activity against gram-positive aerobic cocci, intracellular microorganisms, and anaerobes. The bactericidal action of temafloxacin results from interference with the activity of the bacterial enzymes DNA gyrase. Omniflox was approved to treat lower respiratory tract infections, genital and urinary infections like prostatitis, and skin infections in the U.S. by the Food and Drug Administration in January 1992. Severe adverse reactions, including allergic reactions and hemolytic anemia, developed in about fifty patients during the first four months of its use, leading to three patient deaths. Abbott withdrew the drug from sale in June 1992.
Status:
US Previously Marketed
Source:
PENETREX by SANOFI AVENTIS US
(1991)
Source URL:
First approved in 1991
Source:
PENETREX by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Enoxacin is bactericidal drugs, eradicating bacteria by interfering with DNA replication. Like other fluoroquinolones, enoxacin functions by inhibiting bacterial DNA gyrase and topoisomerase IV. The inhibition of these enzymes prevents bacterial DNA replication, transcription, repair and recombination. Enoxacin is active against many Gram-positive bacteria. After oral administration enoxacin is rapidly and well absorbed from the gastrointestinal tract. The antibiotic is widely distributed throughout the body and in the different biological tissues. Tissue concentrations often exceed serum concentrations. The binding of enoxacin to serum proteins is 35 to 40%. The serum elimination half-life, in subjects with normal renal function, is approximately 6 hours. Approximately 60% of an orally administered dose is excreted in the urine as unchanged drug within 24 hours. Enoxacin, like other fluoroquinolones, is known to trigger seizures or lower the seizure threshold. The compound should not be administered to patients with epilepsy or a personal history of previous convulsive attacks as may promote the onset of these disorders.
Status:
US Previously Marketed
Source:
ETHMOZINE by SHIRE
(1990)
Source URL:
First approved in 1990
Source:
ETHMOZINE by SHIRE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Moricizine is an antiarrhythmic agent previously marketed as Ethmozine. It was used for prophylaxis and treatment of serious and life-threatening ventricular arrhythmias. In 2007 it was withdrawn and discontinued for commercial reasons. Moricizine can be administered intravenously but was more commonly provided as an oral formulation.
Status:
US Previously Marketed
Source:
VASCOR by JOHNSON AND JOHNSON
(1990)
Source URL:
First approved in 1990
Source:
VASCOR by JOHNSON AND JOHNSON
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Bepridil is a calcium channel blocker that has well characterized anti-anginal properties and known but poorly characterized type 1 anti-arrhythmic and anti-hypertensive properties. It has inhibitory effects on both the slow calcium and fast sodium inward currents in myocardial and vascular smooth muscle, interferes with calcium binding to calmodulin, and blocks both voltage and receptor operated calcium channels. It is used to treat hypertension (high blood pressure), angina (chest pain), sustained atrial fibrillation and tachyarrhythmia. The most common side effects were upper gastrointestinal complaints (nausea, dyspepsia or GI distress), diarrhea, dizziness, asthenia and nervousness. Certain drugs could increase the likelihood of potentially serious adverse effects with bepridil hydrochloride. In general, these are drugs that have one or more pharmacologic activities similar to bepridil hydrochloride, including anti-arrhythmic agents such as quinidine and procainamide, cardiac glycosides and tricyclic anti-depressants. Anti-arrhythmics and tricyclic anti-depressants could exaggerate the prolongation of the QT interval observed with bepridil hydrochloride. Cardiac glycosides could exaggerate the depression of AV nodal conduction observed with bepridil hydrochloride.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(22)(ii) antifungal:diaper rash methylparaben
Source URL:
First approved in 1987
Source:
NDA019527
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methylparaben (E number E218) is preservative in the food, cosmetic, and pharmaceutical industries. It is completely absorbed through the skin or after ingestion and and it is hydrolyzed to para-hydroxybenzoic acid, and metabolites are rapidly excreted in the urine. Methylparaben is on the FDA generally regarded as safe list.
Status:
US Previously Marketed
Source:
CHIBROXIN by MERCK
(1991)
Source URL:
First approved in 1986
Source:
NOROXIN by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Norfloxacin is an antibacterial agent, It inhibits inhibits DNA synthesis by inhibiting DNA gyrase enzyme. Norfloxacin was approved in 1986 for treatment of urinary tract infections, gynecological infections, prostatitis, gonorhhea and bladder infections. In ophtalmology, norfloxacin is used for treatment of conjunctivitus.
Status:
US Previously Marketed
Source:
CESAMET by BAUSCH
(1985)
Source URL:
First approved in 1985
Source:
CESAMET by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Nabilone is a synthetic cannabinoid approved under the brand name cesamet for treatment of severe nausea and vomiting associated with cancer chemotherapy. Nabilone is an orally active which, like other cannabinoids, has complex effects on the central nervous system (CNS). It has been suggested that the antiemetic effect of nabilone is caused by interaction with the cannabinoid receptor system, i.e. the CB (1) receptor, which has been discovered in neural tissues.
Status:
US Previously Marketed
Source:
TONOCARD by ASTRAZENECA
(1984)
Source URL:
First approved in 1984
Source:
TONOCARD by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Tocainide is a primary amine analog of lidocaine with antiarrhythmic properties useful in the treatment of ventricular arrhythmias. Tocainide, like lidocaine, produces dose-dependent decreases in sodium and potassium conductance, thereby decreasing the excitability of myocardial cells. In experimental animal models, the dose-related depression of sodium current is more pronounced in ischemic tissue than in normal tissue. Tocainide is a Class I antiarrhythmic compound with electrophysiologic properties in man similar to those of lidocaine, but dissimilar from quinidine, procainamide, and disopyramide. The recommended initial dosage is 400 mg every 8 hours. The usual adult dosage is between 1200 and 1800 mg/day in a three-dose daily divided regimen. Doses beyond 2400 mg per day have been administered infrequently. Patients who tolerate the t.i.d. the regimen may be tried on a twice-daily regimen with careful monitoring. Tocainide commonly produces minor, transient, nervous system and gastrointestinal adverse reactions, but is otherwise generally well tolerated.
Status:
US Previously Marketed
Source:
NICLOCIDE by BAYER PHARMS
(1982)
Source URL:
First approved in 1982
Source:
NICLOCIDE by BAYER PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Niclosamide is an antihelminth used against tapeworm infections. It may act by the uncoupling of the electron transport chain to ATP synthase. The disturbance of this crucial metabolic pathway prevents creation of adenosine tri-phosphate (ATP), an essential molecule that supplies energy for metabolism. Niclosamide works by killing tapeworms on contact. Adult worms (but not ova) are rapidly killed, presumably due to uncoupling of oxidative phosphorylation or stimulation of ATPase activity. The killed worms are then passed in the stool or sometimes destroyed in the intestine. Niclosamide may work as a molluscicide by binding to and damaging DNA. Niclosamide is used for the treatment of tapeworm and intestinal fluke infections: Taenia saginata (Beef Tapeworm), Taenia solium (Pork Tapeworm), Diphyllobothrium latum (Fish Tapeworm), Fasciolopsis buski (large intestinal fluke). Niclosamide is also used as a molluscicide in the control of schistosomiasis. Niclosamide was marketed under the trade name Niclocide, now discontinued.
Status:
US Previously Marketed
Source:
MINTEZOL by MERCK SHARP DOHME
(1967)
Source URL:
First approved in 1967
Source:
MINTEZOL by MERCK SHARP DOHME
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Thiabendazole (TBZ, trade names Mintezol, Tresaderm, and Arbotect) was first introduced in 1962. This drug is a fungicide and parasiticide and is indicated for the treatment of: strongyloidiasis (threadworm), cutaneous larva migrans (creeping eruption), visceral larva migrans, trichinosis: relief of symptoms and fever and a reduction of eosinophilia have followed the use of this drug during the invasion stage of the disease. But usage of this drug was discontinued. The precise mode of action of thiabendazole on the parasite is unknown, but it may inhibit the helminthspecific enzyme fumarate reductase. It was shown, also that thiabendazole reversibly disassembles newly established blood vessels, marking it as vascular disrupting agent (VDA) and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapies. Was shown, that vascular disruption by TBZ results from reduced tubulin levels and hyper-active Rho signaling. In addition, was confirmed, that thiabendazole slowed tumor growth and decreased vascular density in preclinical fibrosarcoma xenografts and thus, it could lead directly to the identification of a potential new therapeutic application for an inexpensive drug that is already approved for clinical use in humans.