{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2020)
Source:
ANDA208247
(2020)
Source URL:
First approved in 2011
Source:
NDA022522
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Roflumilast is a specific phosphodiesterase type (4PDE4) inhibitor indicated for use as a treatment to reduce the risk of COPD exacerbations in patients with severe COPD associated with chronic bronchitis and a history of exacerbations.
Status:
US Approved Rx
(2019)
Source:
ANDA208575
(2019)
Source URL:
First approved in 2011
Source:
NDA022433
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ticagrelor (known trade names Brilinta, Brilique and Possia) is a P2Y12 platelet inhibitor. Brilinta has been approved by the US Food and Drug administration (FDA) in 2011 and is indicated to reduce the rate of cardiovascular death, myocardial infarction, and stroke in patients with acute coronary syndrome (ACS) or a history of myocardial infarction. Brilinta also reduces the rate of stent thrombosis in patients who have been stented for treatment of ACS. Ticagrelor and its major metabolite reversibly interact with the platelet P2Y12 ADP-receptor to prevent signal transduction and platelet activation. Ticagrelor and its active metabolite are approximately equipotent. In vitro metabolism studies demonstrate that ticagrelor and its major active metabolite are weak inhibitors of CYP3A4, potential activators of CYP3A5 and inhibitors of the P-gp transporter. Most common adverse reactions are bleeding 12% and dyspnea 14%.
Status:
US Approved Rx
(2011)
Source:
NDA202429
(2011)
Source URL:
First approved in 2011
Source:
NDA202429
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Vemurafenib (trade name Zelboraf) is a low molecular weight, orally available kinase inhibitor. It inhibits of some mutated forms of BRAF serinethreonine kinase, including BRAF V600E and is indicated for the treatment of patients with unresectable or metastatic melanoma with BRAF V600E mutation as detected by an FDA-approved test. Vemurafenib also inhibits other kinases in vitro such as CRAF, ARAF, wild-type BRAF, SRMS, ACK1, MAP4K5 and FGR at similar concentrations. Vemurafenib is not recommended for use in patients with wild-type BRAF melanoma. Zelboraf does not cure melanoma, but stops it's progression. Some 26% of patients in clinical trials developed a non melanoma form of skin cancer called cutaneous squamous cell carcinoma, which can usually be removed via relatively simple surgery. Other side effects include joint pain, rash, hair loss, fatigue, nausea, and skin sensitivity to sunlight. Patients taking Zelboraf must avoid sun exposure. It's not yet clear how long Zelboraf can increase melanoma survival.
Status:
US Approved Rx
(2020)
Source:
NDA213138
(2020)
Source URL:
First approved in 2011
Source:
NDA201699
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Fidaxomicin (trade names Dificid, Dificlir in Europe) is the first in a new class of narrow spectrum macrocyclic antibiotic drugs indicated for treatment of Clostridium difficile-associated diarrhea. Lipiarmycin (fidaxomicin), a metabolite of Actinoplanes deccanensis nov. sp. was first isolated in pure form in 1970s and was considered as antibiotic from its chemical and physico-chemical characteristics. It demonstrated high activity against Gram-positive bacteria, including strains resistant to the medically important antibiotics and protected mice experimentally infected with Streptococcus haemolyticus. Fidaxomicin is non-systemic, meaning it is minimally absorbed into the bloodstream, it is bactericidal, and it has demonstrated selective eradication of pathogenic Clostridium difficile with minimal disruption to the multiple species of bacteria that make up the normal, healthy intestinal flora. Although the exact mechanism of action has yet to be fully elucidated, fidaxomicin may bind to and inhibit bacterial DNA-dependent RNA polymerase, thereby inhibiting the initiation of bacterial RNA synthesis. When orally administered, this agent is minimally absorbed into the systemic circulation, acting locally in the gastrointestinal tract. Fidaxomicin appears to be active against pathogenic Gram-positive bacteria, such as clostridia, enterococci, and staphylococci, but does not appear to be active against other beneficial intestinal bacteria. The maintenance of normal physiological conditions in the colon can reduce the probability of Clostridium difficile infection recurrence. It is marketed by Cubist Pharmaceuticals after acquisition of its originating company Optimer Pharmaceuticals.
Status:
US Approved Rx
(2016)
Source:
NDA208026
(2016)
Source URL:
First approved in 2011
Source:
NDA201280
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Linagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor discovered by Boehringer Ingelheim and being developed as an oral once-daily tablet for the treatment of Type 2 diabetes. Linagliptin was first approved by FDA in 2011 under the trade name Tradjenta as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. Linagliptin binds to DPP-4 (an enzyme that degrades the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide
(GIP)) in a reversible manner and thus increases the concentrations of incretin hormones. Linagliptin glucose dependently increases insulin secretion and lowers glucagon secretion, thus resulting in better regulation of glucose homeostasis. Linagliptin binds selectively to DPP-4, and selectively inhibits DPP-4 but not DPP-8 or DPP-9 activity in vitro at concentrations approximating therapeutic exposures.
Status:
US Approved Rx
(2011)
Source:
NDA202439
(2011)
Source URL:
First approved in 2011
Source:
NDA202439
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Rivaroxaban (trade name Xarelto) is an oral anticoagulant. It is the first available orally active direct factor Xa inhibitor. Upon oral administration, rivaroxaban selectively binds to both free factor Xa and factor Xa bound in the prothrombinase complex. This interferes with the conversion of prothrombin (factor II) to thrombin and eventually prevents the formation of cross-linked fibrin clots. Rivaroxaban does not affect existing thrombin levels. Activation of factor X to factor Xa (FXa) via the intrinsic and extrinsic pathways plays a central role in the cascade of blood coagulation. Xarelto is indicated to reduce the risk of stroke and systemic embolism in patients with nonvalvular atrial fibrillation, treatment and prophylaxis of deep vein thrombosis (DVT) which may lead to PE in patients undergoing knee or hip replacement surgery, pulmonary embolism (PE) and for the reduction in the risk of recurrence of deep vein thrombosis and of pulmonary embolism following initial 6 months treatment for DVT and/or PE.
Status:
US Approved Rx
(2021)
Source:
ANDA213729
(2021)
Source URL:
First approved in 2010
Source:
NDA022562
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Carglumic acid is a Carbamoyl Phosphate Synthetase 1 (CPS 1) allosteric modulator. CPS1 is found in the mitochondria and is the first enzyme of the urea cycle, which converts ammonia into urea. Carglumic acid acts as a replacement for NAG in NAGS deficiency patients by activating CPS1 but it does not help to regulate the urea cycle. Carglumic acid under the trade name Carbaglu indicated as adjunctive therapy for the treatment of acute hyperammonemia due to the deficiency of the hepatic enzyme N-acetylglutamate synthase (NAGS). In addition, as maintenance therapy for the treatment of chronic hyperammonemia due to the deficiency of the hepatic enzyme N-acetylglutamate synthase (NAGS). This rare genetic disorder results in elevated blood levels of ammonia, which can eventually cross the blood–brain barrier and cause neurologic problems, cerebral edema, coma, and death.
Status:
US Approved Rx
(2010)
Source:
NDA200327
(2010)
Source URL:
First approved in 2010
Source:
NDA200327
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftaroline is a fifth-generation broad-spectrum cephalosporin with potent antimicrobial activity against Gram-positive and Gram-negative pathogens. Ceftaroline is the bioactive metabolite of ceftaroline fosamil, an N-phosphonoamino water-soluble cephalosporin prodrug, which is rapidly converted in vivo upon the hydrolysis of the phosphonate group by plasma phosphatises. Ceftaroline fosamil is being developed by Forest Laboratories, under a license from Takeda. In 2010, the U.S. Food and Drug Administration (FDA) approved ceftaroline fosamil for use in the treatment of acute bacterial skin and skin structure infections as well as community-acquired pneumonia. Ceftaroline has bactericidal activity against methicillin-resistant Staphylococcus aureus, therefore serving as an attractive alternative agent for the treatment of methicillin-resistant Staphylococcus aureus bacteremia when approved agents are contraindicated or treatment failures have occurred. Like other β-lactams, ceftaroline’s mechanism of action is mediated by binding to the penicillin-binding protein (PBP), the enzyme mediating the cross-linking transpeptidation of the peptidoglycan which are the terminal steps in completing formation of the bacterial cell wall. MRSA strains have a mutated PBP2a which prohibits β-lactam antibiotics from accessing its active site that mediates the transpeptidation reaction. Ceftaroline possesses an ethoxyimino side-chain mimicking a portion of a cell wall structure, which acts as a “Trojan horse”, allosterically opening and facilitating access to the active site of the PBP2a. Based on clinical trial data to date, ceftaroline appears to be safe and well-tolerated. Since ceftaroline is a cephalosporin, it has caused serious hypersensitivity reactions in patients who are allergic to cephalosporins and among some patients with penicillin allergies.
Status:
US Approved Rx
(2021)
Source:
NDA214358
(2021)
Source URL:
First approved in 2010
Source:
NDA022512
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Dabigatran (Pradaxa, Prazaxa) is an anticoagulant medication that can be taken by mouth. FDA approved on October 19, 2010. Dabigatran directly inhibits thrombin in a concentration-dependent, reversible, specific, and competitive manner which results in a prolongation of aPTT (partial thromboplastin time), ECT (Ecarin clotting time), and TT (thrombin time). It may increase INR but this laboratory parameter is relatively insensitive to the activity of dabigatran. Dabigatran is indicated for the prevention of venous thromboembolic events in patients who have undergone elective hip or knee replacement surgery (based on RE-NOVATE, RE-MODEL, and RE-MOBILIZE trials). In 2010, it was approved in the US and Canada for prevention of stroke and systemic embolism in patients with atrial fibrillation (approval based on the RE-LY trial). Contraindications: severe renal impairment (CrCL < 30 ml/min); haemorrhagic manifestations, bleeding diathesis or spontaneous or pharmacologic impairment of haemostasis; lesions at risk of clinically significant bleeding (e.g. extensive cerebral infarction (haemorrhagic or ischemic) in the last 6 months, active peptic ulcer disease); concomitant treatment with P-glycoprotein inhibitors (e.g. oral ketoconazole, verapamil); and those with known hypersensitivity to dabigatran, dabigatran etexilate or any ingredient used in the formulation or component of the container. As of December 2012, dabigatran is contraindicated in patients with mechanical prosthetic heart valves.
Status:
US Approved Rx
(2021)
Source:
ANDA208047
(2021)
Source URL:
First approved in 2010
Source:
NDA200603
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Lurasidone is a novel antipsychotic agent approved for the treatment of schizophrenia in a number of countries including the UK and is also approved in the USA and Canada for the treatment of bipolar depression as either a monotherapy or adjunctive therapy with lithium or valproate. In addition, lurasidone is in phase III of a clinical trial for the treatment patient with major depressive disorder and for the treatment of irritability associated with autistic disorder. The mechanism of action of lurasidone, as with other drugs having efficacy in schizophrenia, is unknown but is known, that lurasidone has a high affinity for dopamine D2, serotonin 5-HT2A and serotonin 5-HT7 receptors where it has antagonist effects. In addition, lurasidone is a partial agonist at the serotonin 5-HT1A receptor and has no appreciable affinity for histamine or muscarinic receptors.