{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1986)
Source:
ANDA071081
(1986)
Source URL:
First approved in 1980
Source:
MECLOMEN by PARKE DAVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Meclofenamic acid, used as Meclofenamate sodium, is a non-steroidal anti-inflammatory agent with antipyretic and antigranulation activities. Meclofenamate sodium capsules are indicated for the relief of mild to moderate pain, for the treatment of primary dysmenorrhea and for the treatment of idiopathic heavy menstrual blood loss; for relief of signs and symptoms of juvenile arthritis; so as for relief of the signs and symptoms of rheumatoid arthritis; For relief of the signs and symptoms of osteoarthritis. The mode of action, like that of other nonsteroidal anti-inflammatory agents, is not known. Therapeutic action does not result from pituitary-adrenal stimulation. In animal studies, meclofenamate sodium was found to inhibit prostaglandin synthesis and to compete for binding at the prostaglandin receptor site. In vitro, meclofenamate sodium was found to be an inhibitor of human leukocyte 5-lipoxygenase activity. These properties may be responsible for the anti-inflammatory action of meclofenamate sodium. There is no evidence that meclofenamate sodium alters the course of the underlying disease.
Status:
US Approved Rx
(2014)
Source:
ANDA091608
(2014)
Source URL:
First approved in 1967
Source:
NDA015034
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mefenamic acid is a non-steroidal anti-inflammatory agent with analgesic, anti-inflammatory, and antipyretic properties. It is used for the treatment of mild to moderate pain, including menstrual pain, inflammation, and fever. Clinical use of mefenamic acid has generally declined in an era where other NSAID use has flourished. While having modes of action and general toxicities similar to other NSAIDs, mefenamic acid, as a member of the fenamates, nevertheless possesses some unique in vitro effects that have the potential to distinguish this agent from others. Use of this drug remains relevant for pain syndromes and some gynecological disorders, albeit with considerable competition from other NSAIDs. New basic science has considerably improved the understanding of the biochemistry of mefenamic acid. As well as maintaining its use in traditional settings, there is a tremendous potential for expanding the application of mefenamic acid to niche roles. Mefenamic acid binds the prostaglandin synthetase receptors COX-1 and COX-2, inhibiting the action of prostaglandin synthetase. Mefenamic acid concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because mefenamic acid is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues.
Status:
US Approved Rx
(2010)
Source:
ANDA200181
(2010)
Source URL:
First approved in 1961
Source:
NDA011909
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Phenelzine is an irreversible non-selective inhibitor of monoamine oxidase. Although the exact mechanism of action has not been determined, it appears that the irreversible, nonselective inhibition of MAO by phenelzine relieves depressive symptoms by causing an increase in the levels of serotonin, norepinephrine, and dopamine in the neuron. Phenelzine is used for the treatment of major depressive disorder. Has also been used with some success in the management of bulimia nervosa.
Status:
US Approved Rx
(2007)
Source:
ANDA065173
(2007)
Source URL:
First approved in 1960
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Paromomycin is a broad spectrum aminoglycoside antibiotic produced by by Streptomyces rimosus var. paromomycinus and used to treat intestinal infections such as cryptosporidiosis and amoebiasis, and other diseases such as leishmaniasis. Paromomycin is also used for the management of hepatic coma as adjunctive therapy. Paromomycin inhibits protein synthesis by binding to bacterial or protozoal 16S ribosomal RNA which causes defective polypeptide chains to be produced. Continuous production of defective proteins eventually leads to bacterial death. Gastrointestinal side effects include nausea, vomiting, diarrhea, and abdominal discomfort.
Status:
US Approved Rx
(2023)
Source:
ANDA217213
(2023)
Source URL:
First approved in 1957
Source:
NDA010596
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Mesuximide (or methsuximide) is an anticonvulsant medication. It is sold by Pfizer under the name Petinutin. Binds to T-type voltage sensitive calcium channels. Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by mibefradil. A particularity of this type of channels is an opening at quite negative potentials and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle. They may also be involved in the modulation of firing patterns of neurons which is important for information processing as well as in cell growth processes. Mesuximide is used for the control of absence (petit mal) seizures that are refractory to other drugs.
Status:
US Approved Rx
(1996)
Source:
NDA020450
(1996)
Source URL:
First approved in 1938
Source:
Dilantin by Parke-Davis
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Phenytoin is an anti-epileptic drug. Phenytoin has been used with much clinical success against all types of epileptiform seizures, except petit mal epilepsy. Phenytoin is a available for oral administration (tablets, capsules, suspension). CEREBYX® (fosphenytoin sodium injection) is a prodrug intended for parenteral administration; its active metabolite is phenytoin. CEREBYX should be used only when oral phenytoin administration is not possible. Although several potential targets for phenytoin action have been identified within the CNS (Na-K-ATPase, the GABAA receptor complex, ionotropic glutamate receptors, calcium channels and sigma binding sites) to date, though, the best evidence hinges on the inhibition of voltage-sensitive Na channels in the plasma membrane of neurons undergoing seizure activity.
Status:
Investigational
Source:
NCT00050830: Phase 2 Interventional Completed Lung Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Canertinib or CI-1033 (N-[4-[N-(3-Chloro-4-fluorophenyl)amino]-7-[3-(4-morpholinyl)propoxy]quinazolin-6-yl]acrylamide) is a pan-erbB tyrosine kinase inhibitor. It selectively inhibits erbB1 (epidermal growth factor receptor), erbB2, erbB3, and erbB4 without inhibiting tyrosine kinase activity of receptors such as platelet-derived growth factor receptor, fibroblast growth factor receptor, and insulin receptor, even at high concentrations. Canertinib was under development by Pfizer Inc as a potential treatment for cancer.
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Avasimibe (CI 1011) is a potent ACAT (Acyl-CoA:cholesterol acyltransferase) inhibitor. Avasimibe inhibits both ACAT1 and ACAT2 isoforms. Avasimibe was in development by Parke-Davis (now Pfizer) in the US for the treatment of atherosclerosis and hyperlipidaemia. Avasimibe was in phase III studies and more than 1300 patients had been treated for up to one year, however, in October 2003, Pfizer announced that development had been discontinued.
Status:
Investigational
Source:
NCT00033384: Phase 2 Interventional Completed Breast Cancer
(2002)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
CI 1040 is an inhibitor of the mitogen-activated protein (MAP) kinase signal transduction pathway and has been shown to specifically inhibit MAP kinase kinase (MEK). CI 1040 was being developed by Parke-Davis (formerly a division of WarnerLambert, Now Pfizer) as an anticancer agent. It was the initial MEK inhibitor to undergo clinical evaluation based on promising preclinical activity. However, its development has been discontinued.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
PD 176252 is a competitive antagonist of neuromedin-B preferring (BB1) and gastrin-releasing peptide preferring (BB2) receptors. PD176252 inhibited tumor growtn in preclinical model of lung cancer, and exhibited synergy with EGFR inhibitor in the model of head and neck cancer. PD176252 demonstrated anxiolytic properties in preclinical models.