U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 1147 results

Status:
Investigational
Source:
INN:siramesine [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Siramesine is a sigma2 opioid agonist under development by H Lundbeck as a potential treatment for anxiety. In March 1998, the compound was licensed to Forest Laboratories under a strategic alliance. In August 2000, siramesine entered phase II trials. Siramesine has been shown to trigger cell death of cancer cells and to exhibit a potent anticancer activity in vivo. Siramesine triggers cell death through destabilisation of mitochondria, but not lysosomes. Siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Siramesine involves lysosomal leakage and oxidative stress.
Cidoxepin is the cis-isomer of the widely prescribed tricyclic compound doxepin. Commercial preparations of the tricyclic anti-depressant doxepin contain 15% of the more active cis-doxepin and 85% of the trans-isomer. Elorac, Inc., a rapidly growing specialty pharmaceutical company focused on the treatment of dermatological disorders, is pleased to announce that it has acquired worldwide rights to the active agent Cidoxepin from Gideon Pharmaceuticals. Cidoxepin appears to be much more potent than doxepin while having less sedative and cholinergic side effects. Elorac plans to develop oral formulations of the drug to treat urticaria and topical formulations for treatment of atopic and contact dermatitis.
Status:
Investigational
Source:
NCT02303262: Phase 2 Interventional Completed Metastatic Leiomyosarcoma
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Mocetinostat is an rationally designed, orally available, Class 1-selective, small molecule, 2-aminobenzamide HDAC inhibitor with potential antineoplastic activity. Mocetinostat binds to and inhibits Class 1 isoforms of HDAC, specifically HDAC 1, 2 and 3, which may result in epigenetic changes in tumor cells and so tumor cell death; although the exact mechanism has yet to be defined, tumor cell death may occur through the induction of apoptosis, differentiation, cell cycle arrest, inhibition of DNA repair, upregulation of tumor suppressors, down regulation of growth factors, oxidative stress, and autophagy, among others. It is undergoing clinical trials for treatment of various cancers including bladder cancer, diffuse large B cell lymphoma, follicular lymphoma, myelodysplastic syndromes, non-small cell lung cancer. Fatigue, weight loss or anorexia were most common treatment-related adverse events.
Status:
Investigational
Source:
NCT00726648: Phase 1/Phase 2 Interventional Completed Relapsing Multiple Sclerosis
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Zaurategrast (CDP323) is an ethyl ester prodrug of CT7758, a potent carboxylic acid antagonist of integrin alpha4-beta1 (α4β1) or very late antigen 4 (VLA4). CDP323 was under development with UCB and Biogen Idec for the treatment of multiple sclerosis. Its development was discontinued in 2009 based on inadequate interim efficacy data in a phase II clinical trial.
Status:
Investigational
Source:
NCT00163085: Phase 2 Interventional Completed Parkinson's Disease
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Traxoprodil (CP-101,606) is a potent, selective N-Methyl-D-aspartate (NMDA) receptor (NR2B subunit) antagonist under development by Pfizer for its potential as a neuroprotectant in head injury and neurodegenerative disease. It is in phase II trials in the US and in phase I in Japan for the potential treatment of head injury, such as, Depressive Disorder, Major and Parkinson's Disease. CP-101,606 does not protect against glutamate-induced neurotoxicity in cultured cerebellar neurons, up to a dose of 10 uM. These results are consistent with CP-101,606 being a potent NMDA antagonist, selective for the type of NMDA receptor associated with the hippocampus. Some further investigation revealed that CP-101,606 was associated with a dose-related dissociation and amnesia. These results support the hypothesis that glutamate antagonists may be useful antidyskinetic agents. However, future studies will have to determine if the benefits of dyskinesia suppression can be achieved without adverse cognitive effects.
Tozasertib, originally developed as VX-680 by Vertex (Cambridge, MA) and later renamed MK-0457 by Merck (Whitehouse Station, NY), was the first aurora kinase inhibitor to be tested in clinical trials. The drug, a pyrimidine derivative, has affinity for all aurora family members at nanomolar concentrations with inhibitory constant values (Ki(app)) of 0.6, 18, and 4.6 nM for aurora A, aurora B, and aurora C, respectively. Preclinical studies confirmed that tozasertib inhibited both aurora A and aurora B kinase activity, and activity has been reported against prostate, thyroid, ovarian, and oral squamous cancer cell lines. Upon treatment with tozasertib, cells accumulate with a 4N DNA content due to a failure of cytokinesis. This ultimately leads to apoptosis, preferentially in cells with a compromised p53 function. Tozasertib is an anticancer chemotherapeutic pan-aurora kinase (AurK) inhibitor that also inhibits FMS-like tyrosine kinase 3 (FLT3) and Abl. Tozasertib is currently in clinical trials as a potential treatment for acute lymphoblastic leukemia (ALL). In cellular models of cancer, tozasertib activates caspase-3 and PARP and decreases expression of HDAC, increasing apoptosis and inhibiting cell growth. In other cellular models, tozasertib inhibits cell proliferation and metastasis by blocking downstream ERK signaling and downregulating cdc25c and cyclin B. This compound also decreases tumor growth in an in vivo model of prostate cancer.
Status:
Investigational
Source:
NCT01420510: Phase 2/Phase 3 Interventional Unknown status Vaginitis
(2011)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Adelmidrol is the synthetic derivate of azelaic acid, a naturally occurring saturated dicarboxylic acid, that is found in some whole grains and in trace amounts in the human body. Chemically, ademidrol is the N,N-bis (2-hydroxyethyl) non anediamide and it is an amphiphilic or amphipathic compound, possessing both hydrophilic and hydrophobic properties, that favor its solubility both in aqueous and organic media. Adelmidrol belongs to the aliamide family, a group of fatty acid derivatives with cannabimimetic properties, able to control mast cell (MC) hyperreactivity in several pathophysiological and pathological conditions. Pro-inflammatory NF-κB pathway were markedly reduced by treatment with adelmidrol. The anti-inflammatory effect of adelmidrol appeared to be related on PPAR-gamma activation. Adelmidrol is topically effective for human inflammatory skin disorders and is able to modulate the inflammatory response in human keratinocytes. The combination of hyaluronic acid and adelmidrol improves the signs of osteoarthritis induced by monosodium iodoacetate.
Seliciclib (CYC202, R-roscovitine) is a second-generation orally available cyclin-dependent kinases (CDKs) inhibitor that competes for ATP binding sites on these kinases. It is a direct inhibitor of cyclin CDK2/E, CDK2/A and it has inhibitory effects on cyclin H/CDK7, CDK5, and CDK9. CDKs are enzymes that are central to the process of cell division and cell cycle control and play pivotal roles in cancer cell growth and DNA damage repair. Seliciclib exerts an anti-proliferative effect via several key mechanisms: selective downregulation of proliferative and survival proteins and upregulation of p53, leading to growth arrest or apoptosis. The second one is decreasing phosphorylation of Rb and modulating E2F transcriptional activity leading to growth arrest or apoptosis. Seliciclib is currently in phase II clinical trial as a drug candidate for the treatment of Cushing's disease and as a potential therapeutic agent for the treatment of cystic fibrosis (CF). In addition, it is in Phase II trials for non-small cell lung cancer and nasopharyngeal carcinoma.
Status:
Investigational
Source:
NCT01047059: Phase 2 Interventional Completed Non-Small-Cell Lung Carcinoma
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Alovudine (3’ -deoxy-3’ fluorothymidine) is a nucleoside reverse transcriptase inhibitor (NRTI) initially tested in the early 1990s, before the era of combination therapy and before the availability of plasma viral load measurement. Initial toxicity studies showed that the primary target organ of toxicity was the bone marrow. A lack of clear advantages in activity over zidovudine, the only drug approved in the early 1990s, and the potential for bone marrow toxicity caused alovudine development to be stopped [6]. However, later in vitro studies found alovudine to be very effective at suppressing several NRTI-resistant HIV-1 mutants, including isolates with multiple thymidine-associated mutations (TAMs) or multi-NRTI-resistance mutations. Alovudine at a dose of 7.5 mg/day added to a failing antiretroviral combined regimen in patients with isolates resistant to other NRTIs yielded a median viral load decline after a 4-week period in patients not receiving concomitant stavudine. In July 2003, Medivir out-licensed it's HIV antiviral MIV-310 to Boehringer Ingelheim. Under the terms of the agreement, Boehringer Ingelheim will make upfront and milestone payments to Medivir totaling up to 122 million euro in the event that all development and performance milestones are met. In March 2005, Boehringer Ingelheim recently completed a clinical trial of MIV-310 (alovudine) in HIV/AIDS. The efficacy exhibited by MIV-310 at the doses tested showed antiviral activity but did not achieve the target level of efficacy which had previously been defined. Boehringer Ingelheim, therefore, decided to stop the development of this investigational drug.
Status:
Investigational
Source:
NCT00824421: Phase 2 Interventional Completed HIV-1
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Lersivirine (UK-453,061) is a novel second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI). It binds reverse transcriptase in a distinct way leading to a unique resistance profile. Lersivirine is a second-line NNRTI, which was investigated in a Phase IIb clinical trial. Lersivirine has shown encouraging virologic efficacy in a Phase IIa monotherapy study in NNRTI-naive patients. In a Phase IIb clinical trial in ART naive patients, clinical efficacy of lersivirine was compared with efavirenz, each administered together with tenofovir disoproxil fumarate/emtricitabine. After 48 weeks, lersivirine exhibited a slightly lower virologic response but similar immunologic efficacy. However, the trial was not powered for formal hypothesis testing of noninferiority of lersivirine. The development of lersivirine was recently stopped because the developing company determined that the compound would not provide an improvement over existing NNRTIs.