U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1481 - 1490 of 8583 results

Thiabendazole (TBZ, trade names Mintezol, Tresaderm, and Arbotect) was first introduced in 1962. This drug is a fungicide and parasiticide and is indicated for the treatment of: strongyloidiasis (threadworm), cutaneous larva migrans (creeping eruption), visceral larva migrans, trichinosis: relief of symptoms and fever and a reduction of eosinophilia have followed the use of this drug during the invasion stage of the disease. But usage of this drug was discontinued. The precise mode of action of thiabendazole on the parasite is unknown, but it may inhibit the helminthspecific enzyme fumarate reductase. It was shown, also that thiabendazole reversibly disassembles newly established blood vessels, marking it as vascular disrupting agent (VDA) and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapies. Was shown, that vascular disruption by TBZ results from reduced tubulin levels and hyper-active Rho signaling. In addition, was confirmed, that thiabendazole slowed tumor growth and decreased vascular density in preclinical fibrosarcoma xenografts and thus, it could lead directly to the identification of a potential new therapeutic application for an inexpensive drug that is already approved for clinical use in humans.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ACHIRAL)



Sulfametoxydiazine (INN) or sulfamethoxydiazine (USAN: sulfameter) is a long-acting sulfonamide antibacterial, shows bacteriostatic effects against Gram positive and Gram negative bacteria in vivo. It is used as a leprostatic agent and in the treatment of urinary tract infections. Orally active. Sulfonamides block the synthesis of dihydrofolic acid by inhibiting the enzyme dihydropteroate synthase. Sulfonamides are competitive inhibitors of bacterial para-aminobenzoic acid (PABA), which is required for bacterial synthesis of folic acid. Sulfameter is a dihydrofolate reductase (DHFR) inhibitor. Mode of resistance is via the alteration of dihydropteroate synthase or alternative pathway for folic acid synthesis.
Status:
US Previously Marketed
Source:
Solhar by Person-Covey
(1966)
Source URL:
First approved in 1966
Source:
Solhar by Person-Covey
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Dioxybenzone (benzophenone-8) is an organic compound used in sunscreen to block UVB and short-wave UVA rays. It is a derivative of benzophenone. It is insoluble in water, which lends to the ‘waterproof’ claims that sunscreens make. It’s approved for use in the US at a concentration of 3%.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Pipobroman (trade names Vercite, Vercyte) is an anti-cancer drug that probably acts as an alkylating agent. It is marketed by Abbott Laboratories. Pipobroman (PB) has well documented clinical activity in polycythemia vera (PV) and essential thrombocythemia (ET). The mechanism of action is uncertain but pipobroman is thought to alkylate DNA leading to disruption of DNA synthesis and eventual cell death
Status:
US Previously Marketed
Source:
Oracon by Mead Johnson
(1966)
Source URL:
First approved in 1966
Source:
Oracon by Mead Johnson
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

Dimethisterone (brand name Secrosteron) is an orally active progestational agent. It was developed by the British pharmaceutical company British Drug Houses and was first reported in the literature in 1959 with introduction for medical use as Secrosteron. Relative to ethisterone, it is 12 times as potent orally as a progestogen in animals (Clauberg test). It has an oral LD50 in mice of 7.65 g/kg, no apparent anabolic, androgenic properties and no significant effect on sodium, potassium or water excretion in saline loaded rats. Dimethisterone was introduced in the United States as an oral contraceptive for birth control in combination with ethinylestradiol under the brand name Oracon (25 mg dimethisterone, 100 ug ethinylestradiol) and was produced by Mead Johnson & Company (Evansville, Indiana) in 1974. This preparation was eventually found to be associated with a substantially increased risk of endometrial cancer in women, and is now no longer marketed.
Status:
US Previously Marketed
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
(1966)
Source URL:
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Methacycline is a tetracycline antibiotic. Similar to other tetracyclines, it has a wide spectrum of antimicrobial action. It is active against most Gram-positive bacteria (pneumococci, streptococci, staphylococci) and Gram-negative bacteria (E. coli, salmonella, shigella, etc.), and towards agents causing onithosis, psittacosis, trachoma, and some Protozoa. Like other tetracyclines, the general usefulness of methacycline has been reduced with the onset of bacterial resistance. Methacycline inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex. Methacycline inhibits cell growth by inhibiting translation. It binds to the 16S part of the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. Methacycline is mostly used for the treatment of acute bacterial exacerbations of chronic bronchitis.
Status:
US Previously Marketed
Source:
Solhar by Person-Covey
(1966)
Source URL:
First approved in 1966
Source:
Solhar by Person-Covey
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Oxybenzone is one of the more popular molecules used by chemists during the manufacturing of cosmetics and is included in sunscreen for UV protection. The chemical is often used to stabilize and strengthen the color and scent of skin care products, but its widest use is in the form of sun block. Unfortunately, the debate about the safety of oxybenzone is still ongoing. One of the biggest concerns in the medical community about the widespread use of the molecule comes from the fact that it’s easily absorbed into the body. This absorption raises concerns that oxybenzone may accumulate in the body, eventually leading to potentially toxic levels of the chemical, which can affect the endocrine system.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levomepromazine (also known as methotrimeprazine) is a phenothiazine neuroleptic drug. It is sold in many countries under the generic name (levomepromazine) or under brand names such as Nozinan, Detenler and many more. Levomepromazine is an antipsychotic drug is commonly used as an antiemetic to alleviate nausea and vomiting in palliative care settings particularly in terminal illness. Levomepromazine is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. Levomepromazine's antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, it can block 5HT2 receptors and some others, like histamine, serotonin.
Status:
US Previously Marketed
Source:
Serc by Unimed More
(1966)
Source URL:
First approved in 1966
Source:
Serc by Unimed More
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Betahistine is an orally administered, centrally acting histamine H1 receptor agonist with partial H3 antagonistic activity. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H3 heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H3 autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H1 receptors, should promote and facilitate central vestibular compensation. Betahistine is used to treat the symptoms associated with Ménière's disease, a condition of the inner ear which causes, vertigo (dizziness), tinnitus (ringing in the ears), hearing loss.
Status:
US Previously Marketed
Source:
Thioguanine by Burroughs Wellcome
(1966)
Source URL:
First approved in 1966
Source:
Thioguanine by Burroughs Wellcome
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Thioguanine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute nonlymphocytic leukemia. Anti-metabolites masquerade as purine or pyrimidine - which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the "S" phase (of the cell cycle), stopping normal development and division. Thioguanine was first synthesized and entered into clinical trial more than 30 years ago. It is a 6-thiopurine analogue of the naturally occurring purine bases hypoxanthine and guanine. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Thioguanine is cross-resistant with mercaptopurine. Cytotoxicity is cell cycle phase-specific (S-phase). Thioguanine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to 6-thioguanilyic acid (TGMP), which reaches high intracellular concentrations at therapeutic doses. TGMP interferes with the synthesis of guanine nucleotides by its inhibition of purine biosynthesis by pseudofeedback inhibition of glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway of purine ribonucleotide synthesis. TGMP also inhibits the conversion of inosinic acid (IMP) to xanthylic acid (XMP) by competition for the enzyme IMP dehydrogenase. Thioguanine nucleotides are incorporated into both the DNA and the RNA by phosphodiester linkages, and some studies have shown that incorporation of such false bases contributes to the cytotoxicity of thioguanine. Its tumor inhibitory properties may be due to one or more of its effects on feedback inhibition of de novo purine synthesis; inhibition of purine nucleotide interconversions; or incorporation into the DNA and RNA. The overall result of its action is a sequential blockade of the utilization and synthesis of the purine nucleotides. Thioguanine is used for remission induction and remission consolidation treatment of acute nonlymphocytic leukemias. It is marketed under the trade name Lanvis and Tabloid among others.

Showing 1481 - 1490 of 8583 results