{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2012)
Source:
NDA203441
(2012)
Source URL:
First approved in 2012
Source:
NDA203441
Source URL:
Class:
PROTEIN
Conditions:
Teduglutide is a glucagon-like peptide-2 (GLP-2) analogue. It is made up of 33 amino acids and is manufactured using a strain of Escherichia coli modified by recombinant DNA technology. Teduglutide differs from GLP-2 by one amino acid (alanine is substituted by glycine). The significance of this substitution is that teduglutide is longer acting than endogenous GLP-2 as it is more resistant to proteolysis from dipeptidyl peptidase-4. GLP-2 is known to increase intestinal and portal blood flow, and inhibit gastric acid secretion. Teduglutide binds to the glucagon-like peptide-2 receptors located in intestinal subpopulations of enteroendocrine cells, subepithelial myofibroblasts and enteric neurons of the submucosal and myenteric plexus. Activation of these receptors results in the local release of multiple mediators including insulin-like growth factor (IGF)-1, nitric oxide and keratinocyte growth factor (KGF). FDA approved on December 21, 2012. In Europe it has been granted orphan drug status and is marketed under the brand Revestive by Nycomed. It works by promoting mucosal growth and possibly restoring gastric emptying and secretion.
Status:
US Approved Rx
(2011)
Source:
BLA125370
(2011)
Source URL:
First approved in 2011
Source:
BLA125370
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2011)
Source:
BLA125377
(2011)
Source URL:
First approved in 2011
Source:
BLA125377
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2021)
Source:
BLA761179
(2021)
Source URL:
First approved in 2011
Source:
Erwinaze
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2011)
First approved in 2011
Class:
PROTEIN
Status:
US Approved Rx
(2024)
Source:
BLA761274
(2024)
Source URL:
First approved in 2011
Source:
BLA125387
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2011)
Source:
BLA125288
(2011)
Source URL:
First approved in 2011
Source:
BLA125288
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2011)
Source:
BLA125388
(2011)
Source URL:
First approved in 2011
Source:
BLA125388
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2025)
Source:
BLA761404
(2025)
Source URL:
First approved in 2010
Source:
BLA125320
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2010)
Source:
NDA022341
(2010)
Source URL:
First approved in 2010
Source:
NDA022341
Source URL:
Class:
PROTEIN
Conditions:
Liraglutide is an acylated human Glucagon-Like Peptide-1 (GLP-1) receptor agonist with 97% amino acid sequence homology to endogenous human GLP-1(7-37). GLP-1(7-37) represents <20% of total circulating endogenous GLP-1. Like GLP-1(7-37), liraglutide activates the GLP-1 receptor, a membranebound cell-surface receptor coupled to adenylyl cyclase by the stimulatory G-protein, Gs, in pancreatic beta cells. Liraglutide increases intracellular cyclic AMP (cAMP) leading to insulin release in the presence of elevated glucose concentrations. This insulin secretion subsides as blood glucose concentrations decrease and approach euglycemia. Liraglutide also decreases glucagon secretion in a
glucose-dependent manner. The mechanism of blood glucose lowering also involves a delay in gastric emptying. GLP-1(7-37) has a half-life of 1.5-2 minutes due to degradation by the ubiquitous endogenous enzymes, dipeptidyl peptidase IV (DPP-IV) and neutral endopeptidases (NEP). Unlike native GLP-1, liraglutide is stable against metabolic degradation by both peptidases and has a plasma half-life of 13 hours after subcutaneous administration. The pharmacokinetic profile of liraglutide, which makes it suitable for once daily administration, is a result of self-association that delays absorption, plasma protein binding and stability against metabolic degradation by DPP-IV and NEP. Liraglutide, a subcutaneous, once-daily GLP-1 agonist, is approved for the treatment of type 2 diabetes in the United States and Europe. It also has been studied for weight loss. Liraglutide helps to induce and sustain weight loss in patients with obesity. Its efficacy is comparable to other available agents but it offers the unique benefit of improved glycemic control.