U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 141 - 150 of 4602 results

Erdafitinib (JNJ-42756493) is a potent and selective orally bioavailable, pan fibroblast growth factor receptor (FGFR) inhibitor with potential antineoplastic activity. It was discovered in collaboration with Janssen Pharmaceutica, N.V. from a partnership which commenced in June 2008. Astex’s FGFr inhibitor program originated from a collaboration initiated in 2005 with the Cancer Research UK Drug Discovery Group at the Newcastle Cancer Centre (Newcastle University UK), and Cancer Research Technology Limited. JNJ42756493 is currently being evaluated by Janssen in Phase 2 clinical trials in patients with urothelial cancer, advanced hepatocellular carcinoma, advanced non-small lung cancer, esophageal cancer or cholangiocarcinoma. JNJ-42756493 is a potent, oral pan-FGFR tyrosine kinase inhibitor with half-maximal inhibitory concentration values in the low nanomolar range for all members of the FGFR family (FGFR1 to FGFR4), with minimal activity on vascular endothelial growth factor receptor (VEGFR) kinases compared with FGFR kinases (approximately 20-fold potency difference). In vitro, the proliferation of cells treated with JNJ-42756493 is decreased, associated with increased apoptotic death and decreased cell survival. It is also in phase I trials for the treatment of advanced refractory solid tumors or advanced refractory hematologic cancer.

Class (Stereo):
CHEMICAL (ACHIRAL)



Tafamidis meglumine (Vyndaqel®, Pfizer) is a novel, first-in-class drug for the treatment of transthyretin familial amyloid polyneuropathy (TTR-FAP), a rare neurodegenerative disorder characterized by progressive sensory, motor and autonomic impairment that is ultimately fatal. Pathogenic mutations in the transthyretin (TTR) protein lead to destabilization of its tetrameric structure and subsequent formation of amyloid aggregates. Tafamidis is a small-molecule inhibitor that binds selectively to TTR in human plasma and kinetically stabilizes the tetrameric structure of both wild-type TTR and a number of different mutants. Clinical trials indicate that tafamidis slows disease progression in patients with TTR-FAP and reduces the burden of disease, demonstrating improvement in small and large nerve fiber function, modified body mass index and lower extremity neurological examination. Tafamidis meglumine has been launched for TTR FAP in the EU, Japan, Argentina, Malta and Mexico, and is preregistration in the US for this indication.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Afamelanotide (SCENESSE) is a synthetic α-melanocyte stimulating hormone analog and first-in-class melanocortin-1 receptor agonist that is approved in the EU for the prevention of phototoxicity in adults with erythropoietic protoporphyria. Afamelanotide differs from endogenous α-melanocyte stimulating hormone at the fourth and seventh amino acid residues, increasing its resistance to immediate degradation and increasing its binding time to melanocortin-1 receptor. Afamelanotide is mimic the pharmacological activity of α-melanocyte stimulating hormone by binding to the melanocortin-1 receptor on melanocytes and activating the synthesis of eumelanin. Eumelanin provides photoprotection through mechanisms including, but not limited to, the absorption and scattering of visible and UV light and antioxidant activity. Afamelanotide increases eumelanin density in healthy volunteers and patients with erythropoietic protoporphyria. In healthy, fair-skinned volunteers, a significant increase in melanin density and skin darkening in both sun-exposed and non-sun-exposed sites was seen with subcutaneous injections of afamelanotide. The most common afamelanotide adverse events included headache and nausea. Common adverse effects include back pain, upper respiratory tract infections, decreased appetite, migraine, and dizziness.
Bremelanotide (formerly PT-141) was developed for the treatment of female sexual dysfunction, hemorrhagic shock, and reperfusion injury. Bremelanotide, a synthetic peptide analog of α-melanocyte-stimulating hormone (α-MSH) is an agonist at melanocortin receptors including the MC3R and MC4R, which are expressed primarily in the central nervous system. Bremelanotide originally was tested for intranasal administration in treating female sexual dysfunction but this application was temporarily discontinued in 2008 after concerns were raised over adverse side effects of increased blood pressure. It appears that development for hemorrhagic shock and reperfusion injury has been discontinued. Palatin Technologies licensed North American development and commercialization rights of bremelanotide to Amag in January 2017. In June 2018, the US Food and Drug Administration (FDA) accepted AMAG Pharmaceuticals’ new drug application for bremelanotide for treatment of hypoactive sexual desire disorder in premenopausal women. If approved, bremelanotide will be available as a self-administered, disposable subcutaneous auto-injector used in anticipation of a sexual encounter.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Gallium edotreotide Ga-68 is a radioconjugate consisting of the octreotide derivative edotreotide labeled with gallium 68 (Ga-68). Similar to octreotide, gallium Ga 68-edotreotide binds to somatostatin receptors (SSTRs), especially type 2 receptors, present on the cell membranes of many types of neuroendocrine tumor cells and their metastases, thereby allowing for imaging of SSTR-expressing cells with positron emission tomography (PET). Gallium edotreotide Ga-68 has been authorized in the EU as SomaKit for the diagnosis of gastro-entero-pancreatic neuroendocrine tumors. It was investigated in clinical trials for imaging of brain tumors, pituitary tumors and neuroendocrine tumors of various origin.
Elexacaftor (VX-445) is a next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector. It received FDA approval in October 2019 in combination with tezacaftor and ivacaftor as the combination product Trikafta for the treatment of cystic fibrosis in patients aged ≥ 12 years who have ≥ 1 F508del mutation in the CFTR gene. Trikafta™ has been developed by Vertex Pharmaceuticals Inc. to treat patients with the most common cystic fibrosis mutation (F508del). Its use has been associated with statistically significant and/or clinically meaningful improvements in lung function and respiratory-related quality of life compared with comparator regimens (placebo or ivacaftor/tezacaftor) in multinational phase II and III studies. Elexacaftor and tezacaftor bind to different sites on the CFTR protein and have an additive effect in facilitating the cellular processing and trafficking of select mutant forms of CFTR (including F508del-CFTR) to increase the amount of CFTR protein delivered to the cell surface compared to either molecule alone. Ivacaftor potentiates the channel open probability (or gating) of the CFTR protein at the cell surface.
Fedratinib (SAR-302503, TG-101348) is a selective small-molecule inhibitor of Janus kinase-2. Fedratinib demonstrated therapeutic efficacy in a murine model of myeloproliferative disease. Sanofi was developing Fedratinib for the treatment of myeloproliferative diseases and solid tumors. The clinical development of fedratinib was terminated after reports of Wernicke's encephalopathy in myelofibrosis patients.
Upadacitinib (ABT-494) is a Janus kinase 1 (JAK1) inhibitor currently being developed by AbbVie for the treatment of rheumatoid arthritis (RA), Crohn’s disease, ulcerative colitis, atopic dermatitis, and psoriatic arthritis. It is also being investigated as a potential treatment for people with active ankylosing spondylitis (AS). Currently, upadacitinib is being evaluatedin six global phase III studies in RA and twophase III studies in psoriatic arthritis (PsA), inaddition to phase II studies in Crohn’s disease and atopicdermatitis and a combined phase II/III study inulcerative colitis. Upadacitinib is a potent and selective Janus kinase (JAK) 1 inhibitor with an IC50 of 43 nM.
ODM-201 (also known as BAY-1841788) is a non-steroidal antiandrogen, specifically, a full and high-affinity antagonist of the androgen receptor (AR), that is under development by Orion and Bayer HealthCare for the treatment of advanced, castration-resistant prostate cancer (CRPC). ODM-201 appears to negligibly cross the blood-brain-barrier. This is beneficial due to the reduced risk of seizures and other central side effects from off-target GABAA receptor inhibition that tends to occur in non-steroidal antiandrogens that are structurally similar to enzalutamide. Moreover, in accordance with its lack of central penetration, ODM-201 does not seem to increase testosterone levels in mice or humans, unlike other non-steroidal antiandrogens. Another advantage is that ODM-201 has been found to block the activity of all tested/well-known mutant ARs in prostate cancer, including the recently-identified clinically-relevant F876L mutation. ODM-201 has been studied in phase I and phase II clinical trials and has thus far been found to be effective and well-tolerated, with the most commonly reported side effects including fatigue, nausea, and diarrhea. No seizures have been observed.
Zanubrutinib (formerly known as BGB-3111) was developed by BeiGene as a small-molecule inhibitor of Bruton's tyrosine kinase (BTK). The drug forms a covalent bond with a cysteine residue in the BTK active site, leading to inhibition of BTK activity. BTK signaling results in activation of pathways necessary for B-cell proliferation, trafficking, chemotaxis, and adhesion, thus Zanubrutinib inhibits malignant B-cell proliferation and reduces tumor growth. Zanubrutinib was granted accelerated approval by the FDA in November 2019 based on clinical trial results that demonstrated an 84% overall response rate from zanubrutinib therapy in patients with mantle cell lymphoma (MCL). On August 31, 2021, the Food and Drug Administration approved zanubrutinib for adult patients with Waldenström’s macroglobulinemia (WM).