{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2023)
Source:
ANDA205981
(2023)
Source URL:
First approved in 2009
Source:
Onglyza
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Conditions:
Saxagliptin is an orally active hypoglycemic (anti-diabetic drug) of the new dipeptidyl peptidase-4 (DPP-4) inhibitor class of drugs. FDA approved on July 31, 2009. Saxagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor antidiabetic for the treatment of type 2 diabetes. DPP-4 inhibitors are a class of compounds that work by affecting the action of natural hormones in the body called incretins. Incretins decrease blood sugar by increasing consumption of sugar by the body, mainly through increasing insulin production in the pancreas, and by reducing production of sugar by the liver. [Bristol-Myers Squibb Press Release] DPP-4 is a membrane associated peptidase which is found in many tissues, lymphocytes and plasma. DPP-4 has two main mechanisms of action, an enzymatic function and another mechanism where DPP-4 binds adenosine deaminase, which conveys intracellular signals via dimerization when activated. Saxagliptin forms a reversible, histidine-assisted covalent bond between its nitrile group and the S630 hydroxyl oxygen on DPP-4. The inhibition of DPP-4 increases levels active of glucagon like peptide 1 (GLP-1), which inhibits glucagon production from pancreatic alpha cells and increases production of insulin from pancreatic beta cells.
Status:
US Approved Rx
(2023)
Source:
ANDA205981
(2023)
Source URL:
First approved in 2009
Source:
Onglyza
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Saxagliptin is an orally active hypoglycemic (anti-diabetic drug) of the new dipeptidyl peptidase-4 (DPP-4) inhibitor class of drugs. FDA approved on July 31, 2009. Saxagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor antidiabetic for the treatment of type 2 diabetes. DPP-4 inhibitors are a class of compounds that work by affecting the action of natural hormones in the body called incretins. Incretins decrease blood sugar by increasing consumption of sugar by the body, mainly through increasing insulin production in the pancreas, and by reducing production of sugar by the liver. [Bristol-Myers Squibb Press Release] DPP-4 is a membrane associated peptidase which is found in many tissues, lymphocytes and plasma. DPP-4 has two main mechanisms of action, an enzymatic function and another mechanism where DPP-4 binds adenosine deaminase, which conveys intracellular signals via dimerization when activated. Saxagliptin forms a reversible, histidine-assisted covalent bond between its nitrile group and the S630 hydroxyl oxygen on DPP-4. The inhibition of DPP-4 increases levels active of glucagon like peptide 1 (GLP-1), which inhibits glucagon production from pancreatic alpha cells and increases production of insulin from pancreatic beta cells.
Status:
US Approved Rx
(2017)
Source:
NDA209091
(2017)
Source URL:
First approved in 2008
Source:
NDA202293
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dapagliflozin (trade name Farxiga in the U.S. and Forxiga in the EU and Russia) is a drug of the gliflozin class, developed by Bristol-Myers Squibb in partnership with AstraZeneca. Farxiga is a sodium-glucose cotransporter 2 (SGLT2) inhibitor indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.
Status:
US Approved Rx
(2017)
Source:
NDA209091
(2017)
Source URL:
First approved in 2008
Source:
NDA202293
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dapagliflozin (trade name Farxiga in the U.S. and Forxiga in the EU and Russia) is a drug of the gliflozin class, developed by Bristol-Myers Squibb in partnership with AstraZeneca. Farxiga is a sodium-glucose cotransporter 2 (SGLT2) inhibitor indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.
Status:
US Approved Rx
(2017)
Source:
NDA209091
(2017)
Source URL:
First approved in 2008
Source:
NDA202293
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dapagliflozin (trade name Farxiga in the U.S. and Forxiga in the EU and Russia) is a drug of the gliflozin class, developed by Bristol-Myers Squibb in partnership with AstraZeneca. Farxiga is a sodium-glucose cotransporter 2 (SGLT2) inhibitor indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.
Status:
US Approved Rx
(2007)
Source:
NDA022044
(2007)
Source URL:
First approved in 2006
Source:
NDA021995
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin
Status:
US Approved Rx
(2007)
Source:
NDA022044
(2007)
Source URL:
First approved in 2006
Source:
NDA021995
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin
Status:
US Approved Rx
(2007)
Source:
NDA022044
(2007)
Source URL:
First approved in 2006
Source:
NDA021995
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin
Status:
US Approved Rx
(2007)
Source:
NDA022044
(2007)
Source URL:
First approved in 2006
Source:
NDA021995
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin
Status:
US Approved Rx
(2007)
Source:
NDA022044
(2007)
Source URL:
First approved in 2006
Source:
NDA021995
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin