{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT00730405: Phase 2 Interventional Completed Onychomycosis
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Albaconazole is a triazole antifungal. Azoles are important antifungal compounds, and all drugs in this class inhibit ergosterol synthesis by blocking the 14-α-demethylase enzyme, resulting in the accumulation of toxic methylsterols that may culminate in fungal death. Albaconazole, an oral agent that has demonstrated high levels of bioavailability and potent antifungal activity. It was under development for the treatment of onychomycosis, vulvovaginal candidiasis. Also, albaconazole was evaluated in phase I, a randomized, placebo-controlled clinical trial in patients with tinea pedis. No serious adverse effects occurred in the studies involving albaconazole. However, this researches on this drug were discontinued.
Status:
Possibly Marketed Outside US
Source:
FUNGOID TINCTURE TREATMENT KIT-
Source URL:
First approved in 1983
Source:
Dakins Full by Century Pharmaceuticals, Inc.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
HYPOCHLORITE (as sodium salt) is a main active component of DAKIN'S® antimicrobial solution, which is used to prevent and treat infections of the skin and tissue, and also pre- and post-surgery cuts, abrasions, and skin ulcers.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Liranafate (6-methoxy-2-N-methyl-aminopyridine-thiocarboxylic acid-(5,6,7,8 tetrahydro)-β-Naphthyl ester), a new antifungal drug, is synthesis inhibitor of squalene epoxidase inhibitor and cytoderm inhibitor, which was manufactured by Tosoh Corporation and Zenyaku Kogyo Corporation. It firstly came to the market in August 2000 in Japan. By inhibiting the squalene epoxide reactions of fungal cells and detering the synthesis of ergosterol, which is a constituent of cell membrane. The antifungal activity of Liranafate is 8 times as high as that of Tolnaftate. Liranafate is especially effective against trichophyton rubrum.
Status:
Possibly Marketed Outside US
Source:
EBERNET by Sociedad Espanola De Especialidades Farmaco-Terapeuticas
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Eberconazole is an antifungal drug with broad antimicrobial spectrum of activity. The drug was developed and approved in Spain (Ebernet 1% cream) for the treatment of tinea. Eberconazole exerts fungicidal or fungistatic activity depending on concentration, being fungicidal at higher concentration and fungistatic at lower concentrations. Eberconazole prevents fungal growth by inhibiting ergosterol synthesis, an essential component of the fungal cytoplasmic membrane leading to structural and functional changes. It prevents the fungal ergosterol synthesis by inhibiting lanosterol 14alpha-demethylase enzyme that is responsible for the formation of 14 alpha-methylsterols (precursor of ergosterols).
Status:
US Approved Rx
(2019)
Source:
ANDA208201
(2019)
Source URL:
First approved in 1988
Source:
NDA019599
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Naftifine is a synthetic, broad spectrum, antifungal agent and allylamine derivative. The following in vitro data are available, but their clinical significance is unknown. Naftifine has been shown to exhibit fungicidal activity in vitro against a broad spectrum of organisms including Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans, Epidermophyton floccosum, and Microsporum canis, Microsporum audouini, and Microsporum gypseum; and fungistatic activity against Candida species including Candida albicans. However it is only used to treat the organisms listed in the indications. Although the exact mechanism of action against fungi is not known, naftifine appears to interfere with sterol biosynthesis by inhibiting the enzyme squalene 2,3-epoxidase. This inhibition of enzyme activity results in decreased amounts of sterols, especially ergosterol, and a corresponding accumulation of squalene in the cells. Naftifine is used for the topical treatment of tinea pedis, tinea cruris, and tinea corporis caused by the organisms Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and Epidermophyton floccosum. Marketed as Naftin.
Status:
US Approved Rx
(1992)
Source:
NDA020209
(1992)
Source URL:
First approved in 1988
Source:
NDA019828
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Oxiconazole nitrate is 2',4'-dichloro-2-imidazol-1-ylacetophenone (Z)-[0-(2,4-dichlorobenzyl)oxime], mononitrate is an imidazole derivative characterized by a broad fungistatic spectrum. In vitro oxiconazole is highly effective against many dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans, and Epidermophyton floccosum. In addition, fungicidal activity of various degree was found in selected species (Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans and Trichophyton mentagrophytes). Synthesis of DNA was inhibited by subinhibitory concentrations of oxiconazole in parallel to cell multiplication, whereas synthesis of RNA, protein and carbohydrate was decreased to a lesser extent. OXISTAT® (Oxiconazole nitrate) Cream and Lotion are indicated for the topical treatment of the following dermal infections: tinea pedis, tinea cruris, and tinea corporis due to Trichophyton rubrum, Trichophyton mentagrophytes, or Epidermophyton floccosum. OXISTAT® Cream is indicated for the topical treatment of tinea (pityriasis) versicolor due to Malassezia furfur. Oxiconazole cream exerts no detectable systemic effect since only a negligible amount is absorbed from the skin. Once-daily use of oxiconazole cream could be valuable in patients with a history of noncompliance with multiple-daily regimens of other topical antifungal agents.
Status:
US Approved Rx
(2002)
Source:
ANDA076005
(2002)
Source URL:
First approved in 1982
Source:
SPECTAZOLE by ALVOGEN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Econazole (commonly used as the nitrate salt) is an antifungal medication of the imidazole class. It is a broad spectrum antimycotic with some action against Gram positive bacteria. It is used topically in dermatomycoses also orally and parenterally. Sold under the brand name Ecoza among others, it is indicated for the treatment of interdigital tinea
pedis caused by Trichophyton rubrum, Trichophyton mentagrophytes, and
Epidermophyton floccosum in patients 12 years of age and older. Econazole interacts with 14-α demethylase, a cytochrome P-450 enzyme necessary to convert lanosterol to ergosterol. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Econazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms, inhibit purine uptake, and impair triglyceride and/or phospholipid biosynthesis.
Status:
US Approved Rx
(2002)
Source:
ANDA076005
(2002)
Source URL:
First approved in 1982
Source:
SPECTAZOLE by ALVOGEN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Econazole (commonly used as the nitrate salt) is an antifungal medication of the imidazole class. It is a broad spectrum antimycotic with some action against Gram positive bacteria. It is used topically in dermatomycoses also orally and parenterally. Sold under the brand name Ecoza among others, it is indicated for the treatment of interdigital tinea
pedis caused by Trichophyton rubrum, Trichophyton mentagrophytes, and
Epidermophyton floccosum in patients 12 years of age and older. Econazole interacts with 14-α demethylase, a cytochrome P-450 enzyme necessary to convert lanosterol to ergosterol. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Econazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms, inhibit purine uptake, and impair triglyceride and/or phospholipid biosynthesis.
Status:
US Approved Rx
(2021)
Source:
ANDA212443
(2021)
Source URL:
First approved in 1981
Source:
NIZORAL by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ketoconazole is an azole antifungal. Ketoconazole was the first broad-spectrum oral antifungal agent available to treat systemic and superficial mycoses. Evidence of hepatotoxicity associated with its use emerged within the first few years of its approval. Due to its hepatotoxic side effects, oral ketoconazole was withdrawn from the European and Australian markets in 2013. The United States imposed strict relabeling requirements and restrictions for prescription, with Canada issuing a risk communication echoing these concerns. Today, oral ketoconazole is only indicated for endemic mycoses, where alternatives are not available or feasible. Meanwhile, topical ketoconazole is effective, safe, and widely prescribed for superficial mycoses, particularly as the first-line treatment for tinea versicolor. Topically administered ketoconazole is usually prescribed for fungal infections of the skin and mucous membranes, such as athlete's foot, ringworm, candidiasis (yeast infection or thrush), jock itch, and tinea versicolor. Topical ketoconazole is also used as a treatment for dandruff (seborrheic dermatitis of the scalp) and for seborrheic dermatitis on other areas of the body, perhaps acting in these conditions by suppressing levels of the fungus Malassezia furfur on the skin. Ketoconazole interacts with 14-α demethylase, a cytochrome P-450 enzyme necessary for the conversion of lanosterol to ergosterol. This results in inhibition of ergosterol synthesis and increased fungal cellular permeability. Other mechanisms may involve the inhibition of endogenous respiration, interaction with membrane phospholipids, inhibition of yeast transformation to mycelial forms, inhibition of purine uptake, and impairment of triglyceride and/or phospholipid biosynthesis. Ketoconazole can also inhibit the synthesis of thromboxane and sterols such as aldosterone, cortisol, and testosterone. Ketoconazole is active against clinical infections with Blastomyces dermatitidis, Coccidioides immitis, Histoplasma capsulatum, Paracoccidioides brasiliensis.
Status:
US Approved Rx
(2016)
Source:
ANDA205880
(2016)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Benzoic acid is a natural ingredient occurring in many foodstuffs and in plant extracts. Benzoic acid, its salts and esters are used as preservatives in cosmetic products, with a maximum concentration of 0.5 %. Benzoic acid and sodium benzoate are on the FDA list of substances that are generally recognized as safe (GRAS). Both may be used as antimicrobial agents, flavouring agents and as adjuvants with a current maximum level of 0.1% in food. Benzoic acid is a constituent of Whitfield Ointment, which is used for the treatment of fungal skin diseases such as tinea, ringworm, and athlete's foot. Adverse effect of Whitfield Ointment: occasionally, a localized mild inflammatory response occurs.