{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1968)
Source:
ANDA060711
(1968)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Penicillin V is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The name "penicillin" can either refer to several variants of penicillin available, or to the group of antibiotics derived from the penicillins. Penicillin V has in vitro activity against gram-positive and gram-negative aerobic and anaerobic bacteria. The bactericidal activity of Penicillin V results from the inhibition of cell wall synthesis and is mediated through Penicillin V binding to penicillin binding proteins (PBPs). Penicillin V is stable against hydrolysis by a variety of beta-lactamases, including penicillinases, and cephalosporinases and extended spectrum beta-lactamases. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, Penicillin V inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that Penicillin V interferes with an autolysin inhibitor. Used for the treatment of mild to moderately severe infections (e.g. dental infection, infections in the heart, middle ear infections, rheumatic fever, scarlet fever, skin infections, upper and lower respiratory tract infections) due to microorganisms.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Aporeine (Roemerine) is an aporphine alkaloid that can be isolated from many plants such as Annona
senegalensis, Turkish Papaver and Rollinialeptopetala. Aporeine has been reported to exhibit antibacterial activity. It has also been demonstrated to have certain antifungal activity. Aporeine showed selective inhibitory effect on Cox-2.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Norvancomycin is an analog of glycopeptide antibiotic vancomycin. It was first found to be produced by a soil microorganisms such Nocardia orientalis and Amycolatopsis orientalis and recently was found in actinomycete Amycolatopsis orientalis CPCC200066. Norvancomycin can be derived by demethylation at N-terminus of vancomycin. It has significant inhibitory activity against Gram-positive cocci and bacilli. The mode of action of norvancomycin is based on its ability to bind to the cell-wall peptidoglycan of Gram-positive bacteria terminating tripeptide -L-Lys-D-Ala-D-Ala. Similar to vancomycin in terms of antibacterial activity, spectrum and clinical efficacy norvancomycin has more potent antibiotic activity against Staphylococcus aureus and higher affinity for bacteria cell wall analogue DALAA than vancomycin. Norvancomycin has been widely used in China to treat endocarditis, osteomyelitis and other severe infections caused by Staphylococcus aureus (including methicillin-resistant strains). The adverse drug reactions of norvancomycin are like vancomycin, such as nephrotoxicity, ototoxicity, rash and itching. Norvancomycin is not available therapeutically outside of China.
Status:
Possibly Marketed Outside US
Source:
NCT03237182: Phase 4 Interventional Terminated Tuberculosis, Multidrug-Resistant
(2017)
Source URL:
First approved in 2022
Source:
Kanamycin Sulfates by KDG Impresa LLC, Aqion
Source URL:
Class:
MIXTURE
Targets:
Kanamycin (a mixture of kanamycin A, B and C) is an aminoglycoside bacteriocidal antibiotic, available in oral, intravenous, and intramuscular forms, and used to treat a wide variety of infections. It is effective against Gram-negative bacteria and certain Gram-positive bacteria. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Serious side effects include tinnitus or loss of hearing, toxicity to kidneys, and allergic reactions to the drug. Mixing of an aminoglycoside with beta-lactam-type antibiotics (penicillins or cephalosporins) may result in a significant mutual inactivation. Even when an aminoglycoside and a penicillin-type drug are administered separately by different routes, a reduction in aminoglycoside serum half-life or serum levels has been reported in patients with impaired renal function and in some patients with normal renal function.