U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 31 results

Aprepitant (brand name: Emend (the brand name used in all English-speaking countries an antiemetic, is a substance P/neurokinin 1 (NK1) receptor antagonist which, in combination with other antiemetic agents, is indicated for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy. Aprepitant has little or no affinity for serotonin (5-HT3), dopamine, and corticosteroid receptors, the targets of existing therapies for chemotherapy-induced nausea and vomiting. Aprepitant has been shown to inhibit emesis induced by cytotoxic chemotherapeutic agents, such as cisplatin, via central actions. Animal and human Positron Emission Tomography (PET) studies with aprepitant have shown that it crosses the blood brain barrier and occupies brain NK1 receptors.
Aprepitant (brand name: Emend (the brand name used in all English-speaking countries an antiemetic, is a substance P/neurokinin 1 (NK1) receptor antagonist which, in combination with other antiemetic agents, is indicated for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy. Aprepitant has little or no affinity for serotonin (5-HT3), dopamine, and corticosteroid receptors, the targets of existing therapies for chemotherapy-induced nausea and vomiting. Aprepitant has been shown to inhibit emesis induced by cytotoxic chemotherapeutic agents, such as cisplatin, via central actions. Animal and human Positron Emission Tomography (PET) studies with aprepitant have shown that it crosses the blood brain barrier and occupies brain NK1 receptors.
Palonosetron (INN, trade name Aloxi) is a 5-HT3 antagonist used in the prevention and treatment of postoperative and chemotherapy-induced nausea and vomiting (PONV and CINV). Palonosetron is a 5-HT3 receptor antagonist with a strong binding affinity for this receptor and little or no affinity for other receptors. Cancer chemotherapy may be associated with a high incidence of nausea and vomiting, particularly when certain agents, such as cisplatin, are used. 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery and centrally in the chemoreceptor trigger zone of the area postrema. It is thought that chemotherapeutic agents produce nausea and vomiting by releasing serotonin from the enterochromaffin cells of the small intestine and that the released serotonin then activates 5-HT3 receptors located on vagal afferents to initiate the vomiting reflex. Postoperative nausea and vomiting is influenced by multiple patients, surgical and anesthesia-related factors and is triggered by the release of 5-HT in a cascade of neuronal events involving both the central nervous system and the gastrointestinal tract. The 5-HT3 receptor has been demonstrated to selectively participate in the emetic response. The most common adverse effects are a headache, which occurs in 4–11% of patients, and constipation in up to 6% of patients. In less than 1% of patients, other gastrointestinal disorders occur, as well as sleeplessness, first- and second-degree atrioventricular block, muscle pain and shortness of breath. Palonosetron is similarly well tolerated as other sections, and slightly less than placebo.
Ondansetron (ZOFRAN®) is a selective 5-HT3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by radiotherapy, anesthesia, surgery or cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties. While its mechanism of action has not been fully characterized, ondansetron is not a dopamine-receptor antagonist. It is not certain whether ondansetron's antiemetic action is mediated centrally, peripherally, or in both sites. However, cytotoxic chemotherapy appears to be associated with release of serotonin from the enterochromaffin cells of the small intestine. The released serotonin may stimulate the vagal afferents through the 5-HT3 receptors and initiate the vomiting reflex.
Ondansetron (ZOFRAN®) is a selective 5-HT3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by radiotherapy, anesthesia, surgery or cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties. While its mechanism of action has not been fully characterized, ondansetron is not a dopamine-receptor antagonist. It is not certain whether ondansetron's antiemetic action is mediated centrally, peripherally, or in both sites. However, cytotoxic chemotherapy appears to be associated with release of serotonin from the enterochromaffin cells of the small intestine. The released serotonin may stimulate the vagal afferents through the 5-HT3 receptors and initiate the vomiting reflex.
Status:
First approved in 1959
Source:
Tigan by Hoffmann-La Roche
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Trimethobenzamide (trade names Tebamide, Tigan) is an antiemetic used to prevent nausea and vomiting. Trimethobenzamide is an antagonist of the D2 receptor, that affects the chemoreceptor trigger zone (CTZ) of the medulla oblongata to suppress nausea and vomiting. The oral bioavailability of trimethobenzamide is 60% to 100%. The time to peak is about 45 minutes after oral administration and; I.M. about 30 minutes after intramuscular administration. The onset action of trimethobenzamide for antiemetic effects is 10-40 minutes after oral administration and; 15-35 minutes after intramuscular administration. The duration of action is 3-4 hours. Trimethobenzamide is generally considered the most potent antiemetic that does not have effects on the serotonergic, dopaminergic, or histaminergic systems, so it has a lower likelihood of causing undesired side effects. Possible side effects include drowsiness, dizziness, headache, diarrhea, muscle cramps, and blurred vision. More serious adverse effects include skin rash, tremors, parkinsonism, and jaundice.
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).

Showing 11 - 20 of 31 results