U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 41 - 50 of 51 results

Pravastatin (marketed as Pravachol or Selektine) is a member of the drug class of statins, used in combination with diet, exercise, and weight loss for lowering cholesterol and preventing cardiovascular disease. Pravastatin acts as a lipoprotein-lowering drug through two pathways. In the major pathway, pravastatin inhibits the function of hydroxymethylglutaryl-CoA (HMG-CoA) reductase. As a reversible competitive inhibitor, pravastatin sterically hinders the action of HMG-CoA reductase by occupying the active site of the enzyme. Taking place primarily in the liver, this enzyme is responsible for the conversion of HMG-CoA to mevalonate in the rate-limiting step of the biosynthetic pathway for cholesterol. Pravastatin also inhibits the synthesis of very-low-density lipoproteins, which are the precursor to low-density lipoproteins (LDL). These reductions increase the number of cellular LDL receptors, thus LDL uptake increases, removing it from the bloodstream. Pravastatin is primarily used for the treatment of dyslipidemia and the prevention of cardiovascular disease. It is recommended to be used only after other measures, such as diet, exercise, and weight reduction, have not improved cholesterol levels. The evidence for the use of pravastatin is generally weaker than for other statins. The antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT), failed to demonstrate a difference in all-cause mortality or nonfatal myocardial infarction/fatal coronary heart disease rates between patients receiving pravastatin 40 mg daily (a common starting dose) and those receiving usual care. Pravastatin is generally well tolerated; adverse reactions have usually been mild and transient. In 4-month-long placebo-controlled trials, 1.7% of Pravastatin-treated patients and 1.2% of placebo-treated patients were discontinued from treatment because of adverse experiences attributed to study drug therapy; this difference was not statistically significant.
Lovastatin acid is an active metabolite of hypolipidemic drug Lovastatin. Lovastatin acid inhibits HMG-CoA reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, which is an early and rate limiting step in the biosynthesis of cholesterol. Lovastatin has been shown to reduce both normal and elevated low-density lipoprotein cholesterol (LDL-C). Lovastatin in approved for prevention of cardiovascular events and hypercholesterolemia. Off-label use of lovastatin includes treatmetn of diabetic dyslipidemia, familial dysbetalipoproteinemia, familial combined hyperlipidemia, or nephrotic hyperlipidemia. Lovastatin was tested in clinical trials agains radioation injury during therapy of prostate cancer.
Lovastatin acid is an active metabolite of hypolipidemic drug Lovastatin. Lovastatin acid inhibits HMG-CoA reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, which is an early and rate limiting step in the biosynthesis of cholesterol. Lovastatin has been shown to reduce both normal and elevated low-density lipoprotein cholesterol (LDL-C). Lovastatin in approved for prevention of cardiovascular events and hypercholesterolemia. Off-label use of lovastatin includes treatmetn of diabetic dyslipidemia, familial dysbetalipoproteinemia, familial combined hyperlipidemia, or nephrotic hyperlipidemia. Lovastatin was tested in clinical trials agains radioation injury during therapy of prostate cancer.
Lovastatin acid is an active metabolite of hypolipidemic drug Lovastatin. Lovastatin acid inhibits HMG-CoA reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, which is an early and rate limiting step in the biosynthesis of cholesterol. Lovastatin has been shown to reduce both normal and elevated low-density lipoprotein cholesterol (LDL-C). Lovastatin in approved for prevention of cardiovascular events and hypercholesterolemia. Off-label use of lovastatin includes treatmetn of diabetic dyslipidemia, familial dysbetalipoproteinemia, familial combined hyperlipidemia, or nephrotic hyperlipidemia. Lovastatin was tested in clinical trials agains radioation injury during therapy of prostate cancer.
Status:
Investigational
Source:
NCT02260648: Phase 3 Interventional Terminated Hypercholesterolemia
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Evacetrapib (LY2484595) is a novel benzazepine-based CETP inhibitor that has been developed at Lilly Research Laboratories. Evacetrapib inhibits CETP with IC50 of 5.5 nM, elevates HDL cholesterol without increases in aldosterone or blood pressure. Phase 3. On 01 Sep 2016 Eli Lilly terminates the phase III ACCENTUATE trial in Hyperlipidaemia (Adjunctive treatment) in USA and Puerto Rico (PO) due to insufficient efficacy (NCT02227784).
Status:
Investigational
Source:
NCT01931241: Phase 1 Interventional Unknown status Hypercholesterolemia
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Hyodeoxycholic acid, also known as HDCA, is a secondary bile acid. Natural 6alpha-hydroxylated bile acids are receptor-specific activators of nuclear liver X receptor alpha (LXRalpha), a nuclear receptor regulating the expression of the cholesterol 7alpha-hydroxylase gene. AHRO-001 (Hyodeoxycholic acid) is in phase I clinical trials for the treatment of atherosclerosis. Through a complex signaling processes utilizing LXR receptors, the compound is designed to increase the efficiency of cholesterol efflux using the HDL cells, which act on all cholesterol in the arterial circulation as well as in the lipid core of plaque deposits in the artery walls. Use of AHRO-001 has shown no adverse effects on morbidity, mortality or toxicity and has been well tolerated at high doses.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)


Apocholic acid is a product of mild dehydration of cholic acid. Apocholic acid is powerful complexing and enolizing agent, giving stable addition-compounds (“choleric acids”) with numerous organic molecules. It was shown, that apocholic acid is able to produce tumors in situ. Apocholic acid was found to have a decreasing effect on the cholesterol level of both the plasma and the liver of rats.
(R)-Bambuterol is a selective β2-adrenoceptor agonist. R-Bambuterol Hydrochloride Tablets ("Laevo-Bambuterol") is categorized as a Class 1 new drug. Its preclinical studies show that it is more effective and have lower toxicity than Bambuterol, a popular asthma drug currenTLy on the market. Laevo-Bambuterol was approved by the China Food and Drug Administration for the treatment of asthma.
Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cerivastatin (BAYCOL®) is a competitive inhibitor of HMG-CoA reductase, which is responsible for the conversion of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) to mevalonate, a precursor of sterols, including cholesterol. The inhibition of cholesterol biosynthesis by cerivastatin reduces the level of cholesterol in hepatic cells, which stimulates the synthesis of low-density lipoprotein (LDL) receptors, thereby increasing the uptake of cellular LDL particles. The end result of these biochemical processes is a reduction of the plasma cholesterol concentration. On August 8, 2001 the U.S. Food and Drug Administration (FDA) announced that Bayer Pharmaceutical Division voluntarily withdrew BAYCOL® from the U.S. market, due to reports of fatal rhabdomyolysis, a severe adverse reaction from this cholesterol-lowering (lipid-lowering) product. It has also been withdrawn from the Canadian market.
Status:
US Previously Marketed
First approved in 1967

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dextrothyroxine is the dextrorotary isomer of the synthetic thyroxine. It is an antihyperlipidemic agent. The mechanism of action is not completely understood, but dextrothyroxine apparently acts in the liver to stimulate formation of low-density lipoprotein (LDL) and, to a much greater extent, to increase catabolism of LDL. This leads to increased excretion of cholesterol and bile acids via the biliary route into the feces, with a resulting reduction in serum cholesterol and LDL. Dextrothyroxine has no significant effect on high-density lipoproteins (HDL). Inherently, it will also bind to thyroid receptors and as it is a prohormone, it will bind as a substrate to iodide peroxidase.

Showing 41 - 50 of 51 results