{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2020)
Source:
NDA211723
(2020)
Source URL:
First approved in 2020
Source:
NDA211723
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tazemetostat (EPZ-6438) is a selective inhibitor of histone-lysine N-methyltransferase EZH2. The drug is under clinical development (phase II) for the treatment of Diffuse Large B Cell Lymphoma, Malignant Mesothelioma and Synovial Sarcoma.
Status:
US Approved Rx
(2020)
Source:
NDA211723
(2020)
Source URL:
First approved in 2020
Source:
NDA211723
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tazemetostat (EPZ-6438) is a selective inhibitor of histone-lysine N-methyltransferase EZH2. The drug is under clinical development (phase II) for the treatment of Diffuse Large B Cell Lymphoma, Malignant Mesothelioma and Synovial Sarcoma.
Status:
US Approved Rx
(2020)
Source:
NDA211723
(2020)
Source URL:
First approved in 2020
Source:
NDA211723
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tazemetostat (EPZ-6438) is a selective inhibitor of histone-lysine N-methyltransferase EZH2. The drug is under clinical development (phase II) for the treatment of Diffuse Large B Cell Lymphoma, Malignant Mesothelioma and Synovial Sarcoma.
Status:
US Approved Rx
(2020)
Source:
NDA211723
(2020)
Source URL:
First approved in 2020
Source:
NDA211723
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tazemetostat (EPZ-6438) is a selective inhibitor of histone-lysine N-methyltransferase EZH2. The drug is under clinical development (phase II) for the treatment of Diffuse Large B Cell Lymphoma, Malignant Mesothelioma and Synovial Sarcoma.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.
Status:
Investigational
Source:
NCT04467840: Phase 2/Phase 3 Interventional Completed COVID-19
(2020)
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Conditions:
ABC-294640 is an orally bioavailable and selective sphingosine kinase-2 (SphK2) inhibitor with IC50 of approximately 60 uM. ABC-294640 inhibits SK2, a lipid kinase that catalyzes formation of the lipid signaling molecule sphingosine 1-phosphate (S1P). S1P promotes cancer growth, and proliferation and pathological inflammation, including TNFα signaling and other inflammatory cytokine production. Specifically, by inhibiting the SK2 enzyme, ABC-294640 blocks the synthesis of S1P which regulates fundamental biological processes such as cell proliferation, migration, immune cell trafficking and angiogenesis, and are also involved in immune-modulation and suppression of innate immune responses from T cells. Preliminary evidence suggests that because of its specificity for targeting SK2, rather than SK1, ABC-294640 may have a better therapeutic ratio than nonspecific sphingosine kinase inhibitors or those targeting only SK1. Oral administration of ABC-294640 to mice bearing mammary adenocarcinoma xenografts results in dose-dependent antitumor activity associated with depletion of S1P levels in the tumors and progressive tumor cell apoptosis. Therefore, this newly developed SK2 inhibitor provides an orally available drug candidate for the treatment of cancer and other diseases. ABC-294640 has completed multiple successful pre-clinical studies in inflammatory, GI, radioprotection and oncology models, as well as a Phase I clinical study in cancer patients with advanced solid tumors.
Status:
Investigational
Source:
NCT02909777: Phase 1 Interventional Active, not recruiting Lymphoma
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
CUDC-907 is a small molecule inhibitor of histone deacetylase and PI3 kinase developed by Curis. It is investigated in clinical trials for the treatment of relapsed or refractory lymphomas, thyroid cancer, multiple myeloma, breast cancer and other malignancies.
Status:
Investigational
Source:
NCT01128335: Phase 2 Interventional Completed Liver Transplantation
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sotrastaurin, an orally-active, first-in-class immunomodulator, is under development by Novartis for the treatment of uveal melanoma and diffuse-large B-cell lymphoma. Sotrastaurin is a low molecular mass synthetic compound
that potently inhibits the PKC α, β and the θ isoforms
resulting in selective NF-κB inactivation. Sotrastaurin is a potent and selective pan-PKC inhibitor, mostly for PKCθ with Ki of 0.22 nM in a cell-free assay. Inhibition of PKC beta in B-cells results in prevention of NF-kB-mediated signaling and down regulation of NF-kB target genes. This may eventually lead to an induction of G1 cell cycle arrest and tumor cell apoptosis in susceptible tumor cells. This agent may act synergistically with other chemotherapeutic agents. PKC, a family of serine/threonine protein kinases overexpressed in certain types of cancer cells, is involved in cell differentiation, mitogenesis, inflammation, and the activation and survival of lymphocytes. Sotrastaurin is currently in phase II trials by Novartis for the treatment of large B-cell lymphoma and uveal melanoma. Sotrastaurin was in Phase II of clinical development for the prevention of acute rejection after solid organ transplantation and psoriasis, but this reseach had being discontinued.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.