U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 66 results

Status:
Investigational
Source:
NCT02267863: Phase 1 Interventional Terminated Acute Myelogenous Leukemia in Relapse
(2014)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



APTO-253 is a novel small molecule that can induce expression of the genes that code for the Krüppel-like factor 4 (KLF4) master transcription factor and for the p21 cell cycle inhibitor protein, and can inhibit expression of the c-Myc oncogene, leading to cell cycle arrest and programmed cell death (apoptosis) in human-derived solid tumor and hematologic cancer cells. A Phase 1 study with APTO-253 was completed and demonstrated modest clinical activity in patients with colon cancer, acute leukemia, myelodysplastic syndrome, hematological malignancies and non-small cell lung cancers.
Status:
Investigational
Source:
NCT00932126: Phase 1 Interventional Terminated Advanced Solid Tumors
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



PF-3758309 was developed as an ATP-competitive inhibitor of PAK4. In cells, PF-3758309 inhibits phosphorylation of the PAK4 substrate GEF-H1 (IC50 = 1.3 nM) and anchorage-independent growth of a panel of tumor cell lines (IC50 = 4.7 nM). PF-3758309 blocks the growth of multiple human tumor xenografts, with a plasma EC50 value of 0.4 nM in the most sensitive model. PF-3758309 is antiproliferative and induces apoptosis in an HCT116 tumor model.
Status:
Investigational
Source:
NCT02518113: Phase 1/Phase 2 Interventional Completed T-cell Acute Lymphoblastic Leukemia
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



LY-3039478 is an orally bioavailable, novel small molecule inhibitor of Notch signaling pathway, developed Eli Lilly and Company for cancer treatment. The Notch receptor, on the surfaces of progenitor cells and cancer cells, binds neighboring cell-surface ligands DLL or JAGGED. On ligand binding, the intramembrane protease γ-secretase cleaves the Notch intracellular domain (NICD). LY-3039478 is an exquisitely potent inhibitor of Notch-1 intracellular domain (N1ICD) cleavage with an IC50 of ∼1nM in most of the tumor cell lines tested. LY3039478 also potently inhibits mutant Notch receptor activity. Treatment with a gamma-secretase inhibitor, LY3039478, significantly inhibited the growth of 2 CCRCC(Clear cell renal cell carcinoma) cell lines in a concentration-dependent manner. LY3039478 treatment also led to decreased expression of Myc and Cyclin A1, two genes that were part of the NOTCH driven proliferative signature in murine and human model systems. LY3039478 treatment also led to G0/G1 cell cycle arrest in CCRCC cells. In a xenograft tumor model, LY3039478 inhibited N1ICD cleavage and expression of Notch-regulated genes in the tumor microenvironment. The inhibition of Notch cleavage also resulted in the induction of apoptosis in a Notch-dependent xenograft model. In immunodeficient NSG mice xenografted with 769-P CCRCC cells, LY3039478 treatment resulted in significantly increased survival and delayed tumor growth in independent cohorts of mice demonstrating in vivo efficacy in CCRCC. LY3039478 is being investigated in a clinical trial in patients with T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma in combination with Dexamethasone.
Status:
Investigational
Source:
NCT03671811: Phase 2 Interventional Active, not recruiting Atypical Endometrial Hyperplasia
(2019)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Pterostilbene is a naturally derived compound found primarily in blueberries and Pterocarpus marsupium heartwood. The multiple benefits of pterostilbene in the treatment and prevention of human disease have been attributed to its antioxidant, anti-inflammatory, and anti-carcinogenic properties leading to improved function of normal cells and inhibition of malignant cells. The antioxidant activity of pterostilbene has been implicated in anti-carcinogenesis, modulation of neurological disease, anti-inflammation, attenuation of vascular disease, and amelioration of diabetes. Pterostilbene increases LDL and reduces blood pressure in adults. Low doses of pterostilbene seem to hold some benefit for cognition.
Status:
Investigational
Source:
NCT00652158: Phase 1 Interventional Terminated Advanced Malignancies
(2006)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



MLN8054 is a reversible, ATP competitive inhibitor of recombinant Aurora A, developed by Millennium Pharmaceuticals. MLN8054 was tested in phase I clinical trials against advanced solid tumors. Reversible somnolence probably due to off-target inhibition of alpha-1 subunit of GABA-A receptor was dose limiting and prevented achievement of plasma concentrations predicted necessary for target modulation.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)



N,N,N',N'-TETRAKIS(2-PYRIDYLMETHYL)ETHYLENEDIAMINE (TPEN) is a heavy metal chelator with strong affinities for Zn2+, Fe2+, and Mn2+. TPEN inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro. TPEN prevents HIF-1alpha from interacting with CBP, so reducing expression of HIF-1alpha target genes. TPEN was able to pass through the blood-brain barrier and the neuronal membrane, leading to successful intracellular zinc chelation - zinc chelation could be a potentially effective way for ischemic stroke treatment. TPEN exhibits robust anti-tumor activity in vivo in colon cancer mouse xenografts. In vivo experiments show that TPEN-loaded, aptamer-targeted liposomes reduce tumor growth in a human prostate cancer xenograft model.
Epipinoresinol is an important component of the medicinal herb Eucommia ulmoides, which has a substantial reputation as an effective antihypertensive remedy. Epipinoresinol (EPR) belongs to the group of furofuran-type lignans consisting of two phenylpropane units. (+)-epipinoresinol exhibited antiplatelet aggregation activity. It also exhibited inhibitory effects on nitric oxide production. Epipinoresinol possess antiproliferative activity.
Coptisine (COP), a protoberberine alkaloid, is widely found in Chinese medicinal plants (family Berberidaceae, Ranunculaceae and Papaveraceae). It is reported that COP has a wide range of pharmacological and biological activities, including antibacterial, hypoglycemic, anti-tumorigenic, and gastric-mucous membrane protection. Considerable attention has been focused on its activity against central nervous system disorders, such as improving the symptoms of Alzheimer’s disease and even preventing its onset, by exerting antidepressant effects as a potent type A monoamine oxidase inhibitor. Coptisine was found to be an efficient uncompetitive Indoleamine 2,3-dioxygenase inhibitor. Coptisine is a potent inhibitor of human organic cation transporters.
Veratridine (VTD), an alkaloid derived from the Liliaceae plant shows anti-tumor effects. Veratridine is also an agent that opens voltage dependent Na+ channels, blocks Na+ channel activation, and induces Ca2+ influx. The compound has been observed to be an alkaloid neurotoxin used to amplify sodium permeability. Studies report that Veratridine can trigger exocytosis and induce Ca2+ oscillations. Furthermore, Veratridine has been shown to effect the mitochondrial respiratory chain complexes, induce release of noradrenaline, and increase superoxide anion production. Veratridine competes with BTX binding in a mutually exclusive manner. However, the pharmacological effects of veratridine on Na+ channels are quite different from those of BTX. First, veratridine reduces the single Na+ channel conductance drastically whereas BTX does not. Veratridine therefore is regarded as a partial agonist and BTX as a full agonist of Na+ channels. Second, under voltage clamp conditions BTX binds practically irreversibly to Na+ channels whereas veratridine readily dissociates from its binding site. Both of these drugs, however, bind preferentially to the open state of Na+ channels. The BTX resistant Na+ channels in Phyllobates frogs remain sensitive to veratridine. The ceveratrum alkaloids, including Veratridine, have a characteristic hypotensive effect not directly involving the CNS. They slow the heart and lower arterial blood pressure by reflexly stimulating medullary vasomotor centers without decreasing cardiac output (Bezold–Jarisch effect). These agents were introduced in the 1950s as antihypertensive agents; however, they were found to have a narrow therapeutic index and their use was discontinued.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(20) weight control cystine
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cystine is the oxidized dimer form of the amino acid cysteine. Cystine serves two biological functions, a site of redox reactions and a mechanical linkage that allows proteins to retain their 3-dimensional structure. It is common in many foods such as eggs, meat, dairy products, and whole grains as well as skin, horns and hair. Human hair and skin contain approximately 10–14% cystine by mass. Cysteine supplements are sometimes marketed as anti-aging products with claims of improved skin elasticity. Cysteine is more easily absorbed by the body than cystine, so most supplements contain cysteine rather than cystine. N-acetyl-cysteine (NAC) is better absorbed than other cysteine or cystine supplements.