{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT03218826: Phase 1 Interventional Active, not recruiting Advanced Breast Carcinoma
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
AZD-8186 is a potent and selective inhibitor of PI3Kβ and PI3Kδ with IC50 of 4 nM and 12 nM, respectively. AZD-8186 is currently in phase 1 clinical trials. Combination therapy using AZD-8186 with androgen deprivation results in long-lasting tumor regression, which persisted after treatment cessation.
Status:
Investigational
Source:
NCT01168752: Phase 1 Interventional Completed Cancer
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
CUDC-305, is a novel heat shock protein 90 (HSP90) inhibitor with strong affinity for HSP90 alpha/beta, high oral bioavailability and potent anti-proliferative activity against a broad range of cancer cell lines (with a mean IC50 of 220 nmol/L), including many non-small cell lung cancer (NSCLC) cell lines which are resistant to standard-of-care (SOC) agents. In both laboratory and animal testing, CUDC-305 demonstrated high potency in vitro and/or in vivo across a wide range of cancers. Most notably, Curis scientists observed complete tumor regression following oral administration of CUDC-305 in a mouse xenograft model of acute myelogenous leukemia (AML). Tumor regression has also been observed after treatment of CUDC-305 in mouse xenograft models of breast, non-small cell lung, gastric cancer and glioblastoma brain cancers. In this preclinical testing, the compound also demonstrated an ability to effectively cross the blood brain barrier, and demonstrated an ability to extend survival in an intracranial glioblastoma model. Early stage toxicity studies suggest that CUDC-305 appears to have a better therapeutic window than several leading Hsp90 inhibitors in clinical development.
Status:
Investigational
Source:
NCT03189992: Phase 1 Interventional Unknown status Malignant Tumor of Small Intestine Metastatic to Liver
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cinobufotalin, the bufadienolide isolated from toad venom,
has displayed antitumor activities in many in vitro systems. It has been shown that cinobufotalin induced significant apoptosis in cultured human lymphoma U-937 cells. It induced DNA fragmentation, mitochondrial membrane
potential decrease, and reactive oxygen species (ROS)
production in U-937 cells. Cinobufotalin induces cytotoxic effect in cultured lung cancer cells. Cinobufotalin (1/5 mg/kg, i.p. twice
daily, for 7 days) significantly inhibited A549 xenograft growth in
mice. Further, same cinobufotalin administration improved mice
survival at week five. Cinobufotalin administration didn’t
significantly affect mice body weight, indicating the relative safety
of this regimen. Thus, cinobufotalin inhibits A549 xenograft
growth in vivo and improves mice survival.
Status:
Investigational
Source:
NCT02232646: Phase 2 Interventional Withdrawn Urologic Malignancies
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Amcasertib is an orally administered investigational agent designed to inhibit cancer stemness pathways, including Nanog, by targeting stemness kinases. Amcasertib is undergoing multiple Phase I and Phase II studies as monotherapy and combination therapy for treating a range of tumor types.
Status:
Investigational
Source:
NCT03547115: Phase 1 Interventional Recruiting Follicular Lymphoma (FL)
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Voruciclib (also known as P1446A-05) is a flavone-based, potent and selective CDK 4/6 inhibitor with activity in multiple BRAF-mutant and wild type cell lines. It is currently in clinical trials in combination with BRAF inhibitor (PLX4032) to treat advanced BRAF-mutant melanoma. Voruciclib has significant inhibitory activity against cutaneous and uveal melanoma. Mechanistic studies revealed that P1446A-05 inhibits phosphorylation targets of CDK members, and induces cell cycle arrest and apoptosis irrespective of melanoma genotype or phenotype. Voruciclib Hydrochloride is in phase I clinical trials by Piramal Life Sciences for the treatment of chronic lymphocytic leukaemia and malignant melanoma.
Status:
Investigational
Source:
NCT03691207: Phase 2 Interventional Completed Adenoid Cystic Carcinoma
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
BMS-906024 is a lead candidate of a series of inhibitors of gamma secretase-mediated Notch signalling. BMS-906024 is an orally bioavailable, small-molecule gamma secretase (GS) and pan-Notch inhibitor, with potential antineoplastic activity. Upon administration, GS/pan-Notch inhibitor BMS-906024 binds to GS and blocks activation of Notch receptors, which may inhibit the proliferation of tumor cells with an overly-active Notch pathway. The integral membrane protein GS is a multi-subunit protease complex that cleaves single-pass transmembrane proteins, such as Notch receptors, at residues within their transmembrane domains that lead to their activation. Overexpression of the Notch signaling pathway has been correlated with increased tumor cell growth. BMS-906024 is currently in Phase 1 clinical trials for patients with T-cell acute lymphoblastic leukemia and metastatic solid tumors, including lung cancer.
Status:
Investigational
Source:
NCT00600275: Phase 1/Phase 2 Interventional Completed Solid Tumors
(2007)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
BGT 226 is an orally available, small molecule, the dual inhibitor of mammalian target of rapamycin (mTOR) and phosphatidylinositol 3'kinase (PI3K), developed by Novartis for the treatment of solid tumors, including advanced breast cancer. A phase I/II trial was completed in the US, Canada, and Spain, and a phase I trial was completed in Japan. However, development appears to have been discontinued.
Status:
Investigational
Source:
NCT01712815: Not Applicable Interventional Terminated HER2-positive Breast Cancer
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Clevudine F18 is a radioconjugate comprised of the synthetic pyrimidine analog clevudine (1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)thymine, d-FMAU) labeled with the radioisotope fluorine F18. Upon administration, fluorine F18 clevudine is distributed and taken up by cells based on the rate of the cell’s DNA synthesis. The amount is then measured using positron emission tomography (PET). The compound is investigated as an imaging agent in prostate, breast cancers, and other malignant neoplasms.
Status:
Investigational
Source:
NCT00454090: Phase 1 Interventional Completed Cancer
(2007)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
AZD-8330 is a potent, selective, orally active MEK inhibitor that blocks signal transduction pathways implicated in cancer cell proliferation and survival. AZD-8330 has shown tumor suppressive activity in multiple preclinical models of human cancer including melanoma, pancreatic, colon, lung, and breast cancers. AZD-8330 specifically inhibits mitogen-activated protein kinase kinase 1 (MEK or MAP/ERK kinase1), resulting in inhibition of growth factor-mediated cell signaling and tumor cell proliferation. MEK is a key component of the RAS/RAF/MEK/ERK signaling pathway that regulates cell growth; constitutive activation of this pathway has been implicated in many cancers. AZD-8330 had been in phase I clinical trials by AstraZeneca for the treatment of malignancies. However, this research has been discontinued.
Status:
Investigational
Source:
NCT00813384: Phase 1 Interventional Completed Cancer
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Amgen was developing AMG-208, a small molecule inhibitor of c-Met, for the treatment of cancer. AMG-208 shows the potent inhibition of kinase c-Met activity with IC50 of 9 nM in a cell-free assay. Besides, AMG-208 treatment also leads to the inhibition of HGF-mediated c-Met phosphorylation in PC3 cells with IC50 of 46 nM. AMG-208 showed evidence of antitumor activity, particularly in prostate cancer. On December 1, 2014 Amgen completed a phase I trial in solid tumours.