{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Securinine is a plant-derived alkaloid from the Securinega plant that has been used clinically as a therapeutic for primarily neurological related diseases. Securinine is well-known GABAA antagonist and recently it was found that Securinine is able to up-regulate p53 protein and to modulate the related family member p73 protein in a p53-dependent fashion, inducing p73 in the HCT116 p53(-) cells and down-regulating it in the p53(+) cells. Securinine induces G1 phase cell cycle arrest, upregulates expression of p53 and Bax, and downregulates expression of Bcl-2, PI3K, mTOR, and p70s6k in breast cancer cells and promyelocytic leukemia cells. Securinine activates p38 MAPK, enhancing monocyte antibacterial activity in vitro as well. This compound also exhibits antimicrobial activity against Alternaria, Curvularia, and Helminthosporum. Additionally, securinine decreases AChE activity and suppresses amyloid-β (Aβ)-induced glial inflammatory responses in animal models of Alzheimer’s disease, improving cognitive deficits. Securinine’s activity as a GABA antagonist, likely explains its reported clinical success in limited studies for the treatment of neurological conditions such as amyotrophic lateral sclerosis (ALS), poliomyelitis and multiple sclerosis. Securinine has not been utilized in the United States, it has been used clinically in several other countries particularly China and Russia. In China, it is considered one of the 50 fundamental Chinese herbs and is used in Chinese herbal medicine.
Status:
Investigational
Source:
NCT01847521: Phase 2 Interventional Completed Autism Spectrum Disorders
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Luteolin, 3',4',5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Luteolin possesses a variety of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial and anticancer activities. Numerous studies have shown that luteolin possesses beneficial neuroprotective effects both in vitro and in vivo.
Status:
Investigational
Source:
NCT01915576: Phase 1 Interventional Completed Neoplasms
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
BAY-1125976 is an orally bioavailable inhibitor of the serine/threonine protein kinase AKT (protein kinase B) isoforms 1 and 2 (AKT1/2) with potential antineoplastic activity. AKT1/2 inhibitor BAY1125976 selectively binds to and inhibits the phosphorylation and activity of AKT1/2 in a non-ATP competitive manner, which may result in the inhibition of the phosphatidylinositol 3 (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. This may lead to both the reduction of cell proliferation and the induction of cell apoptosis in AKT-overexpressing tumor cells. The AKT signaling pathway is often deregulated in cancer and is associated with tumor cell proliferation, survival, and migration. BAY 1125976 is equally potent against Akt1 and Akt2 isoforms and up to 86 fold less potent against Akt3 It inhibits the Akt1 and Akt2 by binding into an allosteric binding pocket formed by kinase and PH domain. It inhibits cell proliferation in a broad panel of human cancer cell lines, particularly in breast and prostate cancer cell lines expressing estrogen or androgen receptors. It effectively blocks Akt signaling by inhibiting the phosphorylation of Akt and the downstream effectors, including eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), glycogen synthase kinase 3 beta (GSK3s), proline-rich Akt substrate 40 kDa (PRAS40), S6 ribosomal protein (S6RP), and 70 kDa ribosomal protein S6 kinase 1 (70S6K). BAY 1125976 exhibits strong in vivo efficacy in both cell line and patient-derived xenograft models such as the KPL4 breast cancer model (PIK3CAH1074R mutant), the MCF7 and HBCx-2 breast cancer models, and the AktE17K mutant driven prostate cancer (LAPC-4) and anal cancer (AXF 984) models.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Navoximod (formerly NLG 919, GDC 0919), a small molecule, orally bioavailable, immune checkpoint inhibitor, is being developed by NewLink Genetics for the treatment of solid tumours. Navoximod is a potent IDO (indoleamine-(2,3)-dioxygenase) pathway inhibitor with Ki/EC50 of 7 nM/75 nM. Upon administration, navoximod targets and binds to IDO1, a cytosolic enzyme responsible for the oxidation of the essential amino acid tryptophan into kynurenine. By inhibiting IDO1 and decreasing kynurenine in tumor cells, this agent increases tryptophan levels, restores the proliferation and activation of various immune cells, including dendritic cells (DCs), natural killer (NK) cells, and T-lymphocytes, and causes a reduction in tumor-associated regulatory T-cells (Tregs). Activation of the immune system, which is suppressed in many cancers, may induce a cytotoxic T-lymphocyte (CTL) response against the IDO1-expressing tumor cells. IDO1 is overexpressed by a variety of tumor cell types and plays an important role in immunosuppression. Tryptophan depletion is associated with immunosuppression caused by T-cell suppression. Navoximod is under investigation in clinical trial NCT02048709 (Indoleamine 2,3-Dioxygenase (IDO) inhibitor in advanced solid tumors).
Status:
Investigational
Source:
INN:belizatinib [INN]
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Belizatinib, also known as TSR-011, is an orally available inhibitor of both the receptor tyrosine kinase anaplastic lymphoma kinase (ALK) and the tropomyosin-related kinases (TRK) TRKA, TRKB, and TRKC, with potential antineoplastic activity. Upon administration, ALK/TRK inhibitor TSR-011 binds to and inhibits both ALK and TRK kinases. The inhibition leads to disruption of ALK- and TRK-mediated signaling and impedes tumor cell growth in ALK/TRK-overexpressing tumor cells. ALK belongs to the insulin receptor superfamily and plays an important role in nervous system development; ALK dysregulation and gene rearrangements are associated with a series of tumors.
Status:
Investigational
Source:
INN:sitravatinib [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
MG-516 (Sitravatinib) is a receptor tyrosine kinase (RTK) inhibitor shown in preclinical models to inhibit a closely related spectrum of RTKs including MET, AXL, MER, and members of the VEGFR, PDGFR, DDR2, TRK and Eph families. Broad-spectrum inhibition of multiple RTK signaling pathways by MGCD516 both in vitro and in vivo results in superior activity compared to imatinib and crizotinib. Clinical trials with MGCD516 is currently undergoing.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
FGF-401 is an inhibitor of human fibroblast growth factor receptor 4 (FGFR4), with potential antineoplastic activity. Upon administration, FGF401 binds to and inhibits the activity of FGFR4, which leads to an inhibition of tumor cell proliferation in FGFR4-overexpressing cells. FGFR4 is a receptor tyrosine kinase upregulated in certain tumor cells and involved in tumor cell proliferation, differentiation, angiogenesis, and survival. FGF-401 is an FGFR4 inhibitor in phase I/II clinical studies at Novartis for the treatment of positive FGFR4 and KLB expression solid tumors and hepatocellular carcinoma.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
CX-5461 represents an innovative-targeted agent with numerous differentiating features when compared to current options for treatment of hematologic cancers. CX-5461 is a first-in-class small molecule inhibitor of RNA polymerase I (Pol I) that triggers the nucleolar stress surveillance pathways to activate p53, without causing direct DNA damage. Molecular studies demonstrate that CX-5461 inhibits the initiation stage of rRNA synthesis and induces both senescence and autophagy, but not apoptosis, through a p53-independent process in solid tumor cell lines. Currently, CX-5461 is in clinical trial for patients with advanced hematological malignancies.
Status:
Investigational
Source:
NCT00651365: Phase 1 Interventional Terminated Neoplasms
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
JNJ-38877605 is an orally available, small molecule inhibitor of the proto-oncogene c-Met (hepatocyte growth factor receptor [HGFR]) with potential antineoplastic activity. c-Met inhibitor JNJ-38877605 selectively binds to c-Met, thereby inhibiting c-Met phosphorylation and disrupting c-Met signal transduction pathways. JNJ-38877605 was in Phase I clinical trials. Combined clinical and correlative preclinical studies suggest that renal toxicity of JNJ-38877605 is caused by the formation of species-specific insoluble metabolites. These observations preclude further clinical development of JNJ-38877605.
Status:
Investigational
Source:
INN:adezmapimod [INN]
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
SB-203580 was originally prepared as inflammatory cytokine synthesis inhibitor that subsequently was found to be selective inhibitor of p38 MAP kinase. SB-203580 is a p38 MAPK inhibitor with IC50 of 0.3-0.5 uM in THP-1 cells, 10-fold less sensitive to SAPK3(106T) and SAPK4(106T) and blocks PKB phosphorylation with IC50 of 3-5 uM. SB203580 induces autophagy in human hepatocellular carcinoma (HCC) cells. Development of SB-203580 for cancer; postmenopausal osteoporosis; rheumatoid arthritis; septic shock has been discontinued.