U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 2554 results

Nifurtimox is a nitrofuran derivative used as a primary agent in the treatment of American trypanosomiasis (Chagas' disease) caused by Trypanosoma cruzi, especially in the acute, early stage of the disease. The efficacy of nifurtimox in the treatment of chronic Chagas' disease varies from one country to another, possibly due to variation in the sensitivity of different strains of the organism. Nifurtimox has also been used to treat African trypanosomiasis (sleeping sickness) and is active in the second stage of the disease (central nervous system involvement). When nifurtimox is given on its own, about half of all patients will relapse, but the combination of melarsoprol with nifurtimox appears to be efficacious. Nifurtimox forms a nitro-anion radical metabolite that reacts with nucleic acids of the parasite causing significant break down of DNA. Nifurtimox undergoes reduction and creates oxygen radicals such as superoxide. These radicals are toxic to T. cruzi. Mammalian cells are protected by the presence of catalase, glutathione, peroxidases, and superoxide dismutase. Accumulation of hydrogen peroxide to cytotoxic levels results in parasite death. Side effects occur following chronic administration, particularly in elderly people. Major toxicities include immediate hypersensitivities such as anaphylaxis and delayed hypersensitivity reaction involving icterus and dermatitis. Central nervous system disturbances and peripheral neuropathy may also occur.
Lonafarnib is a well-characterized, late-stage, orally active inhibitor of farnesyl transferase, an enzyme involved in modification of proteins through a process called prenylation. It is Investigated for use/treatment in Progeria, Cancer, Hepatitis D. Lonafarnib completely inhibits Rheb prenylation and phosphorylation of S6 ribosomal protein in cell culture, indicating a lack of alternative Rheb prenylation. Other groups have demonstrated that inhibition of protein synthesis via inactivation of eukaryotic elongation factor (eEF2) could be an alternate mechanism of lonafarnib induced growth inhibition that is independent of RAS/p70S6K eEF. Adverse effects included fatigue, diarrhea, dyspnea and neutropenia and respiratory insufficiency.
Lurbinectedin (PM-01183) - is a synthetic tetrahydropyrrolo [4, 3, 2-de]quinolin-8(1H)-one alkaloid analogue with potential antineoplastic activity. Lurbinectedin covalently binds to residues lying in the minor groove of DNA, which may result in delayed progression through S phase, cell cycle arrest in the G2/M phase and cell death. Lurbinectedin is a novel anticancer agent currently undergoing late-stage (Phase II /III) clinical evaluation in platinum-resistant ovarian, BRCA1/2-mutated breast and small-cell lung cancer. Lurbinectedin is structurally related to trabectedin and it inhibits active transcription and the DNA repair machinery in tumour cells.
Ozanimod (previously known as RPC-1063) is a selective immune-inflammatory modulator of the G protein-coupled receptors sphingosine 1-phosphate 1 and 5, which are part of the sphingosine 1-phosphate (S1P) receptor family. Treatment with S1P receptor modulators interferes with S1P signaling and blocks the response of lymphocytes (a type of white blood cell) to exit signals from the lymph nodes, sequestering them within the nodes. The result is a downward modulation of circulating lymphocytes and anti-inflammatory activity by inhibiting cell migration to sites of inflammation. Ozanimod is currently in phase III clinical trials for the treatment of relapsing multiple sclerosis (RMS) and ulcerative colitis, and also in phase II clinical trials to determine whether it is effective in the treatment of Crohn's disease.
Selinexor (KPT-330) is a first in class XPO1 antagonist being evaluated in multiple later stage clinical trials in patients with relapsed and/or refractory hematological and solid tumor malignancies.
Entrectinib (previously known as RXDX-101, NMS-E628) is an investigational drug, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Entrectinib (RXDX-101) is a selective inhibitor for all three Trk receptor tyrosine kinases encoded by the three NTRK genes, as well as the ROS1 and ALKreceptor tyrosine kinases.This investigational drug is active at low nanomolar concentrations, allowing for once-daily oral administration to patients whose tumors have been shown to have gene rearrangements in NTRK, ROS1, or ALK. Nerviano Medical Sciences, the original sponsor for entrectinib (formerly referred to as NMS-1191372), initiated the first-in-human Phase 1 study ALKA-372-001 in Italy in October 2012. The study is currently ongoing in Italy. Entrectinib is currently being tested in a global phase 2 basket clinical trial called STARTRK-2. In the U.S., entrectinib has orphan drug designation and rare pediatric disease designation for the treatment of neuroblastoma and orphan drug designation for treatment of TrkA-, TrkB-, TrkC-, ROS1- and ALK-positive non-small cell lung cancer (NSCLC) and metastatic colorectal cancer (mCRC).
Pexidartinib (PLX3397) is a small-molecule receptor tyrosine kinase (RTK) inhibitor with potential antineoplastic activity. Pexidartinib binds to and inhibits phosphorylation of stem cell factor receptor (KIT), colony-stimulating factor-1 receptor (CSF1R) and FMS-like tyrosine kinase 3 (FLT3), which may result in the inhibition of tumor cell proliferation and down-modulation of macrophages, osteoclasts and mast cells involved in the osteolytic metastatic disease. FDA has granted Breakthrough Therapy Designation to pexidartinib (PLX3397) for the treatment of tenosynovial giant cell tumor (TGCT) where surgical removal of the tumor would be associated with potentially worsening functional limitation or severe morbidity. In addition to Breakthrough Therapy Designation, pexidartinib (PLX3397) has been granted Orphan Drug Designation by FDA for the treatment of pigmented villonodular synovitis (PVNS) and giant cell tumor of the tendon sheath (GCT-TS). It also has received Orphan Designation from the European Commission for the treatment of TGCT.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Fluorodopa F-18 is the amino acid analog fluorodopa (FDOPA) labeled with fluorine F 18, a positron-emitting isotope. It is diagnostic PET agent, which has been used for decades in imaging the loss of dopaminergic neurons in Parkinson's disease, and more recently to detect, stage and restage neuroendocrine tumours and to search for recurrence of viable glioma tissue. Fluorodopa F-18 is able to cross the blood-brain barrier and is taken up by brain tumor cells. As uptake is higher in tumor cells, tumors may then be imaged using positron emission tomography (PET). Assessing tumor uptake of FDOPA may be beneficial for diagnosis, localization and in determining further treatment. The clinical usefulness of Fluorodopa F-18 has been evaluated and recognised in France and subsequently in several EU countries. Fluorodopa F-18 was registered in France in 2006. 6-fluoro-(18F)-L-3,4-dihydroxyphenylalanine (FDOPA) is a large, neutral amino acid that is transported into presynaptic neurons, where it is converted by the enzyme aromatic aminoacid decarboxylase [AAAD]) into fluorodopamine-(18F), which subsequently enters cathecholamine-storage vesicles. 6-fluoro(18F)-L-dopa crosses the blood-brain barrier; therefore, when injected into the blood stream, it reaches the dopaminergic cells in the brain and is used by the brain as a precursor for dopamine. This makes it possible to monitor intracerebral synthesis and uptake of dopamine by means of the positron-emitting 6-fluoro(18F)-L-3,4-dihydroxyphenylalanine (FDOPA), in conjunction with externally-placed devices suited for detection of annihilation photons, which progressively led to the most recent positron emission tomography (PET) units. Iasodopa, the commercial preparation of FDOPA that obtained a marketing authorisation in France in November 2006 (which is currently recognised by several other EU countries), is a solution for injection. The activity available at time of administration ranges from 0.1 GBq to 0.8 GBq per vial. The half-life of the radionuclide is 109.8 min with emission of positron radiation (Emax: 0.633 MeV) followed by photon annihilation radiations of 0.511 MeV.
Binimetinib (MEK162) is an oral small-molecule with potential antineoplastic activity. It is a selective mitogen-activated protein kinase 1 and 2 (MEK1/2) inhibitor, a key protein kinase in the RAS/RAF/MEK/ERK pathway, which regulates several key cellular activities including proliferation, differentiation, migration, survival and angiogenesis. Inappropriate activation of this pathway has been shown to occur in many cancers, in particular through mutations in BRAF, KRAS and NRAS. MEK162 at 6 mg/kg, BID combined with BEZ235 (dual PI3K/mTOR inhibitor) resulted in a significant reduction of tumor growth in immunodeficient mice injected with MCF7 cells. There are three ongoing Phase 3 trials with binimetinib in advanced cancer patients: NEMO (NRAS-mutant melanoma), COLUMBUS (encorafenib in combination with binimetinib in BRAF-mutant melanoma) and BEACON CRC (encorafenib, binimetinib and cetuximab in BRAF-mutant colorectal cancer).

Class (Stereo):
CHEMICAL (ACHIRAL)



Apalutamide (developmental code name ARN-509) is a selective and competitive androgen receptor inhibitor with IC50 of 16 nM, useful for prostate cancer treatment. Apalutamide binds to AR in target tissues thereby preventing androgen-induced receptor activation and facilitating the formation of inactive complexes that cannot be translocated to the nucleus. This prevents binding to and transcription of AR-responsive genes. This ultimately inhibits the expression of genes that regulate prostate cancer cell proliferation and may lead to an inhibition of cell growth in AR-expressing tumor cells. Apalutamide is currently in phase III clinical trials for castration-resistant prostate cancer.

Showing 11 - 20 of 2554 results