U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 2061 - 2070 of 4002 results

Atomoxetine is indicated for the treatment of Attention-Deficit/Hyperactivity Disorder. The precise mechanism by which atomoxetine produces its therapeutic effects in Attention-Deficit/Hyperactivity Disorder (ADHD) is unknown, but is thought to be related to selective inhibition of the pre-synaptic norepinephrine transporter. Most common adverse reactions are: nausea, vomiting, fatigue, decreased appetite, abdominal pain, and somnolence, constipation, dry mouth, dizziness, erectile dysfunction, and urinary hesitation. Atomoxetine is a substrate for CYP2D6 and hence concurrent treatment with CYP2D6 inhibitors such as bupropion (Wellbutrin) or fluoxetine (Prozac) is not recommended, as this can lead to significant elevations of plasma atomoxetine levels.
Status:
First approved in 2001

Class (Stereo):
CHEMICAL (ABSOLUTE)



Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.
Status:
First approved in 2001

Class (Stereo):
CHEMICAL (ABSOLUTE)



Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.
Imatinib (GLEEVEC®) is a tyrosine kinase inhibitor and antineoplastic agent that inhibits the BCR-ABL tyrosine kinase, the constitutive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality in chronic myeloid leukaemia (CML). It inhibits proliferation and induces apoptosis in BCR-ABL positive cell lines as well as fresh leukemic cells from Philadelphia chromosome positive CML. Imatinib (GLEEVEC®) inhibits colony formation in assays using ex vivo peripheral blood and bone marrow samples from CML patients. It is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib (GLEEVEC®) inhibits proliferation and induces apoptosis in gastrointestinal stromal tumor (GIST) cells, which express an activating c-kit mutation.
Dexmethylphenidate is the dextrorotary form of methylphenidate. Dexmethylphenidate is marketed under the trade name Focalin. Focalin (dexmethylphenidate hydrochloride) is the d-threo-enantiomer of racemic methylphenidate hydrochloride, which is a 50/50 mixture of the d-threo and l-threoenantiomers. Focalin is a central nervous system (CNS) stimulant, available in three tablet strengths. Each tablet contains dexmethylphenidate hydrochloride 2.5, 5, or 10 mg for oral administration. Dexmethylphenidate is used as a treatment for ADHD, ideally in conjunction with psychological, educational, behavioral or other forms of treatment. Methylphenidate blocks dopamine uptake in central adrenergic neurons by blocking dopamine transport or carrier proteins. Methylphenidate acts at the brain stem arousal system and the cerebral cortex and causes increased sympathomimetic activity in the central nervous system. Methylphenidate is a catecholamine reuptake inhibitor that indirectly increases catecholaminergic neurotransmission by inhibiting the dopamine transporter (DAT) and norepinephrine transporter (NET), which are responsible for clearing catecholamines from the synapse, particularly in the striatum and meso-limbic system.
Dexmethylphenidate is the dextrorotary form of methylphenidate. Dexmethylphenidate is marketed under the trade name Focalin. Focalin (dexmethylphenidate hydrochloride) is the d-threo-enantiomer of racemic methylphenidate hydrochloride, which is a 50/50 mixture of the d-threo and l-threoenantiomers. Focalin is a central nervous system (CNS) stimulant, available in three tablet strengths. Each tablet contains dexmethylphenidate hydrochloride 2.5, 5, or 10 mg for oral administration. Dexmethylphenidate is used as a treatment for ADHD, ideally in conjunction with psychological, educational, behavioral or other forms of treatment. Methylphenidate blocks dopamine uptake in central adrenergic neurons by blocking dopamine transport or carrier proteins. Methylphenidate acts at the brain stem arousal system and the cerebral cortex and causes increased sympathomimetic activity in the central nervous system. Methylphenidate is a catecholamine reuptake inhibitor that indirectly increases catecholaminergic neurotransmission by inhibiting the dopamine transporter (DAT) and norepinephrine transporter (NET), which are responsible for clearing catecholamines from the synapse, particularly in the striatum and meso-limbic system.
Status:
First approved in 2001

Class (Stereo):
CHEMICAL (ABSOLUTE)



Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.
Status:
First approved in 2001

Class (Stereo):
CHEMICAL (RACEMIC)



Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.
Status:
First approved in 2001

Class (Stereo):
CHEMICAL (ABSOLUTE)



Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.
Status:
First approved in 2001

Class (Stereo):
CHEMICAL (RACEMIC)



Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.

Showing 2061 - 2070 of 4002 results