{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2020)
Source:
NDA213793
(2020)
Source URL:
First approved in 2020
Source:
NDA213793
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Setmelanotide (RM-493), is an investigational, first-in-class melanocortin-4 receptor (MC4R) agonist in development for the treatment of rare genetic disorders of obesity. Setmelanotide is thought to activate the MC4R, part of a key biological pathway in humans that regulates weight by increasing energy expenditure and reducing appetite. Variants in genes within the MC4 pathway are associated with unrelenting hunger, known as hyperphagia, and severe, early-onset obesity. Setmelanotide is a potential replacement therapy that may restore lost activity in the MC4 pathway, reestablishing weight and appetite control in patients with these rare genetic disorders.
Status:
US Approved Rx
(2020)
Source:
NDA212155
(2020)
Source URL:
First approved in 2020
Source:
NDA212155
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Fluoroestradiol F-18 is a derivative of estradiol. where hydrogen at position 16 is replaced by radioactive fluorine. Fluoroestradiol F-18 is taken up by tumor cells, expression estrogen receptor, and it is clinically evaluated for PET imaging to detect and stage breast cancer, ovarian cancer, and cancer of uterine endometrium and myometrium.
Status:
US Approved Rx
(2020)
Source:
NDA213036
(2020)
Source URL:
First approved in 2020
Source:
NDA213036
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sodium artesunate, an artemisinin derivative, is used in malaria treatment. Artesunate, has been licensed in Thailand for the
treatment of falciparum malaria since 1990. It is a potent antimalarial drug that can reduce parasitaemia by 90% within 24 h of administration. Sodium artesunate was first isolated in China, it is a water soluble antimalaria used clinically in China.
Status:
US Approved Rx
(2020)
Source:
NDA212801
(2020)
Source URL:
First approved in 2020
Source:
NDA212801
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Osilodrostat (INN, USAN) (developmental code name LCI-699) is an orally active, non-steroidal corticosteroid biosynthesis inhibitor which is under development by Novartis for the treatment of Cushing's syndrome and pituitary ACTH hypersecretion (a specific subtype of Cushing's syndrome). Osilodrostat specifically acts as a potent and selective inhibitor of aldosterone synthase (CYP11B2) and at higher dosages of 11β-hydroxylase (CYP11B1). Osilodrostat decreases plasma and urinary aldosterone levels and rapidly corrects hypokalemia, in patients with primary aldosteronism and hypertension. At doses ≥1 mg o.d. Osilodrostat markedly increases 11-deoxycortisol plasma levels and blunts ACTH-stimulated cortisol release in ≈20% of patients, consistent with the inhibition of CYP11B1. In patients with resistant hypertension, Osilodrostat produces a non-significant reduction in blood pressure, possibly due to the increase in 11-deoxycortisol levels and the stimulation of the hypothalamic-pituitary-adrenal feedback axis. Because of the lack of selectivity, poor antihypertensive effect, and short half-life, the development of Osilodrostat as antihypertensive was halted. As of 2017, Osilodrostat is in phase III and phase II clinical trials for the treatment of pituitary ACTH hypersecretion and Cushing's syndrome, respectively.
Status:
US Approved Rx
(2020)
Source:
NDA213006
(2020)
Source URL:
First approved in 2020
Source:
NDA213006
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Vibegron is a selective beta 3 adrenergic receptor (β3AR) agonist that is being developed in Japan jointly by Kyorin Pharmaceutical Co., Ltd and Kissei Pharmaceutical Co., Ltd and in other regions worldwide (except in several other Asian countries) by Urovant Sciences for the treatment of overactive bladder (OAB). Vibegron potently activates human b3AR and increases cAMP levels, with an EC50 of 1.1 nM. Based on results from Japanese phase III trials, vibegron received approval in Japan in September 2018 for this indication. Vibegron, an active ingredient of Beova® Tablets, is a novel once-daily oral treatment for overactive bladder (OAB), acts selectively on the bladder's β3-adrenergic receptor, relaxes the bladder and enhances the urine collection, and consequently improves the symptoms of urgency, urinary frequency and urge urinary incontinence associated with OAB.
Status:
US Approved Rx
(2020)
Source:
NDA213464
(2020)
Source URL:
First approved in 2020
Source:
NDA213464
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Nifurtimox is a nitrofuran derivative used as a primary agent in the treatment of American trypanosomiasis (Chagas' disease) caused by Trypanosoma cruzi, especially in the acute, early stage of the disease. The efficacy of nifurtimox in the treatment of chronic Chagas' disease varies from one country to another, possibly due to variation in the sensitivity of different strains of the organism. Nifurtimox has also been used to treat African trypanosomiasis (sleeping sickness) and is active in the second stage of the disease (central nervous system involvement). When nifurtimox is given on its own, about half of all patients will relapse, but the combination of melarsoprol with nifurtimox appears to be efficacious. Nifurtimox forms a nitro-anion radical metabolite that reacts with nucleic acids of the parasite causing significant break down of DNA. Nifurtimox undergoes reduction and creates oxygen radicals such as superoxide. These radicals are toxic to T. cruzi. Mammalian cells are protected by the presence of catalase, glutathione, peroxidases, and superoxide dismutase. Accumulation of hydrogen peroxide to cytotoxic levels results in parasite death. Side effects occur following chronic administration, particularly in elderly people. Major toxicities include immediate hypersensitivities such as anaphylaxis and delayed hypersensitivity reaction involving icterus and dermatitis. Central nervous system disturbances and peripheral neuropathy may also occur.
Status:
US Approved Rx
(2020)
Source:
NDA213969
(2020)
Source URL:
First approved in 2020
Source:
NDA213969
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Lonafarnib is a well-characterized, late-stage, orally active inhibitor of farnesyl transferase, an enzyme involved in modification of proteins through a process called prenylation. It is Investigated for use/treatment in Progeria, Cancer, Hepatitis D. Lonafarnib completely inhibits Rheb prenylation and phosphorylation of S6 ribosomal protein in cell culture, indicating a lack of alternative Rheb prenylation. Other groups have demonstrated that inhibition of protein synthesis via inactivation of eukaryotic elongation factor (eEF2) could be an alternate mechanism of lonafarnib induced growth inhibition that is independent of RAS/p70S6K eEF. Adverse effects included fatigue, diarrhea, dyspnea and neutropenia and respiratory insufficiency.
Status:
US Approved Rx
(2020)
Source:
NDA213702
(2020)
Source URL:
First approved in 2020
Source:
NDA213702
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Lurbinectedin (PM-01183) - is a synthetic tetrahydropyrrolo [4, 3, 2-de]quinolin-8(1H)-one alkaloid analogue with potential antineoplastic activity. Lurbinectedin covalently binds to residues lying in the minor groove of DNA, which may result in delayed progression through S phase, cell cycle arrest in the G2/M phase and cell death. Lurbinectedin is a novel anticancer agent currently undergoing late-stage (Phase II /III) clinical evaluation in platinum-resistant ovarian, BRCA1/2-mutated breast and small-cell lung cancer. Lurbinectedin is structurally related to trabectedin and it inhibits active transcription and the DNA repair machinery in tumour cells.
Status:
US Approved Rx
(2020)
Source:
NDA214621
(2020)
Source URL:
First approved in 2020
Source:
NDA214621
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Relugolix (TAK-385) is an orally active nonpeptide gonadotropin-releasing hormone (GnRH) that binds to human GnRH receptors with subnanomolar affinity. Relugolix was demonstrated to act as a classic competitive antagonist of GnRH binding, but the exact molecular mechanism of that antagonism remains unknown. This drug is being developed as a treatment for various sex hormone related disorders. Clinical trials have been conducted to study safety and efficacy of relugolix as a treatment in endometriosis, uterine fibroids (noncancerous growths of the uterus), and prostate cancer. Two phase III trials evaluating the efficacy of Relugolix in patients with uterine fibroids were completed in 2019. No serious adverse events were reported.
Status:
US Approved Rx
(2020)
Source:
NDA212489
(2020)
Source URL:
First approved in 2020
Source:
NDA212489
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Opicapone (Ongentys®), a potent, oral, third-generation, long-acting, peripheral catechol-O-methyltransferase (COMT) inhibitor, is approved as the adjunctive treatment to levodopa (L-Dopa)/dopa-decarboxylase inhibitor (DDCI) therapy in adults with Parkinson's disease (PD) and end-of-dose motor fluctuations who cannot be stabilized on those combinations. Opicapone is a hydrophilic 1,2,4-oxadiazole analog with a pyridine N-oxide at position 3, with these modifications enhancing its potency and extending its duration of action, whilst avoiding cell toxicity. In preclinical animal studies, Opicapone-induced inhibition of peripheral (but not central) COMT activity was associated with a prolonged increase in systemic and central exposure to L-Dopa, with a corresponding reduction in 3-OMD exposure. Following single or multiple doses of Opicapone (5–1200 mg) in healthy adult volunteers or patients with PD, Opicapone inhibited COMT activity in ex vivo erythrocyte assays in a reversible dose-dependent manner, with the duration of Opicapone-induced COMT inhibition independent of dose. Adjunctive Opicapone was generally well tolerated during more than a year of treatment in BIPARK I and BIPARK II (double-blind plus extension phases). The recommended dosage is 50 mg once daily, which should be taken at bedtime at least 1 h before or after L-Dopa combinations.