Details
| Stereochemistry | ACHIRAL |
| Molecular Formula | Cu.O4S.5H2O |
| Molecular Weight | 249.685 |
| Optical Activity | NONE |
| Defined Stereocenters | 0 / 0 |
| E/Z Centers | 0 |
| Charge | 0 |
SHOW SMILES / InChI
SMILES
O.O.O.O.O.[Cu++].[O-]S([O-])(=O)=O
InChI
InChIKey=JZCCFEFSEZPSOG-UHFFFAOYSA-L
InChI=1S/Cu.H2O4S.5H2O/c;1-5(2,3)4;;;;;/h;(H2,1,2,3,4);5*1H2/q+2;;;;;;/p-2
| Molecular Formula | H2O |
| Molecular Weight | 18.0153 |
| Charge | 0 |
| Count |
|
| Stereochemistry | ACHIRAL |
| Additional Stereochemistry | No |
| Defined Stereocenters | 0 / 0 |
| E/Z Centers | 0 |
| Optical Activity | NONE |
| Molecular Formula | H2O4S |
| Molecular Weight | 98.078 |
| Charge | 0 |
| Count |
|
| Stereochemistry | ACHIRAL |
| Additional Stereochemistry | No |
| Defined Stereocenters | 0 / 0 |
| E/Z Centers | 0 |
| Optical Activity | NONE |
| Molecular Formula | Cu |
| Molecular Weight | 63.546 |
| Charge | 2 |
| Count |
|
| Stereochemistry | ACHIRAL |
| Additional Stereochemistry | No |
| Defined Stereocenters | 0 / 0 |
| E/Z Centers | 0 |
| Optical Activity | NONE |
DescriptionSources: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a84d61a4-8e7f-4be1-aba6-f633b334aafc | http://www.sciencedirect.com/science/article/pii/S0167488912000158https://www.ncbi.nlm.nih.gov/pubmed/15704330 | https://www.ncbi.nlm.nih.gov/pubmed/12425037 | https://www.ncbi.nlm.nih.gov/pubmed/1599240 | http://www.certisusa.com/pdf-labels/Kocide3000_label.pdf | http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PC33524https://www.ncbi.nlm.nih.gov/pubmed/24106015 | https://www.ncbi.nlm.nih.gov/pubmed/20942456http://fs1.agrian.com/pdfs/CORE_7.5_Copper_EDTA_Label.pdfhttps://www.ncbi.nlm.nih.gov/pubmed/16971307https://www.ncbi.nlm.nih.gov/pubmed/8556785 | https://www.ncbi.nlm.nih.gov/pubmed/2135524https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=522.518 | http://www.worldofchemicals.com/chemicals/chemical-properties/cupric-glycinate.htmlhttps://www3.epa.gov/pesticides/chem_search/ppls/019713-00509-20110705.pdfhttps://www.ncbi.nlm.nih.gov/pubmed/6526221http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500013010.pdfhttp://www.emdmillipore.com/US/en/product/Copper-di-ammonium-Titriplex-solution,MDA_CHEM-105217http://www.drugfuture.com/chemdata/schweizer-s-reagent.html | http://pubs.acs.org/doi/abs/10.1021/ed062p878?journalCode=jceda8 | http://pubs.acs.org/doi/abs/10.1021/ed019p356DOI: 10.1107/s0567740869001725 Retrived from http://scripts.iucr.org/cgi-bin/paper?S0567740869001725http://www.drugfuture.com/chemdata/tetraamminecopper-sulfate.html | https://cameochemicals.noaa.gov/chemical/3026Curator's Comment: description was created based on several sources, including
https://www.copper.org/resources/properties/compounds/other_compounds.html | http://www.vitamins-supplements.org/dietary-minerals/copper.php | https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=bea888b4-9cc6-49da-89e6-5c273b974ed1
Sources: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a84d61a4-8e7f-4be1-aba6-f633b334aafc | http://www.sciencedirect.com/science/article/pii/S0167488912000158https://www.ncbi.nlm.nih.gov/pubmed/15704330 | https://www.ncbi.nlm.nih.gov/pubmed/12425037 | https://www.ncbi.nlm.nih.gov/pubmed/1599240 | http://www.certisusa.com/pdf-labels/Kocide3000_label.pdf | http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PC33524https://www.ncbi.nlm.nih.gov/pubmed/24106015 | https://www.ncbi.nlm.nih.gov/pubmed/20942456http://fs1.agrian.com/pdfs/CORE_7.5_Copper_EDTA_Label.pdfhttps://www.ncbi.nlm.nih.gov/pubmed/16971307https://www.ncbi.nlm.nih.gov/pubmed/8556785 | https://www.ncbi.nlm.nih.gov/pubmed/2135524https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=522.518 | http://www.worldofchemicals.com/chemicals/chemical-properties/cupric-glycinate.htmlhttps://www3.epa.gov/pesticides/chem_search/ppls/019713-00509-20110705.pdfhttps://www.ncbi.nlm.nih.gov/pubmed/6526221http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500013010.pdfhttp://www.emdmillipore.com/US/en/product/Copper-di-ammonium-Titriplex-solution,MDA_CHEM-105217http://www.drugfuture.com/chemdata/schweizer-s-reagent.html | http://pubs.acs.org/doi/abs/10.1021/ed062p878?journalCode=jceda8 | http://pubs.acs.org/doi/abs/10.1021/ed019p356DOI: 10.1107/s0567740869001725 Retrived from http://scripts.iucr.org/cgi-bin/paper?S0567740869001725http://www.drugfuture.com/chemdata/tetraamminecopper-sulfate.html | https://cameochemicals.noaa.gov/chemical/3026
Curator's Comment: description was created based on several sources, including
https://www.copper.org/resources/properties/compounds/other_compounds.html | http://www.vitamins-supplements.org/dietary-minerals/copper.php | https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=bea888b4-9cc6-49da-89e6-5c273b974ed1
Tetraamminecopper sulfate is a dark blue crystalline solid with a faint odor of ammonia. The primary hazard is the threat to the environment. Immediate steps should be taken to limit its spread to the environment. Used as a pesticide and fungicide, to print fabrics (especially in calico finishing), and to make other copper compounds.
CNS Activity
Sources: https://www.ncbi.nlm.nih.gov/pubmed/19014916https://www.ncbi.nlm.nih.gov/pubmed/27022258
Curator's Comment: Known to be CNS active in zebrafish. Human data not available.
Originator
Sources: http://pubs.acs.org/doi/abs/10.1021/ja01512a012Schweizer, J. Prakt. Chem. 72, 109, 344 (1857).
Curator's Comment: http://www.drugfuture.com/chemdata/schweizer-s-reagent.html
Approval Year
Targets
| Primary Target | Pharmacology | Condition | Potency |
|---|---|---|---|
Target ID: CHEMBL1075246 Sources: https://www.ncbi.nlm.nih.gov/pubmed/3861140 |
3.42 µM [Ki] | ||
Target ID: P00450 Gene ID: 1356.0 Gene Symbol: CP Target Organism: Homo sapiens (Human) |
|||
Target ID: Glutathione S-transferase, rat, liver Sources: https://www.ncbi.nlm.nih.gov/pubmed/3008276 |
|||
Target ID: GO:0072593 Sources: https://www.ncbi.nlm.nih.gov/pubmed/8503093 |
|||
Target ID: CHEMBL354 Sources: https://www.ncbi.nlm.nih.gov/pubmed/22098250 |
Conditions
| Condition | Modality | Targets | Highest Phase | Product |
|---|---|---|---|---|
| Preventing | Unknown Approved UseUnknown |
|||
| Preventing | Unknown Approved UseUnknown |
|||
| Preventing | Cupric glycinate Approved UseIndications for use. For beef calves and beef cattle for the prevention of copper deficiency, or when labeled for veterinary prescription use, for the prevention and/or treatment of copper deficiency alone or in association with molybdenum toxicity. |
|||
| Primary | COPPER•MAX Approved UseUnknown |
|||
| Primary | Unknown Approved UseUnknown |
|||
| Preventing | Unknown Approved UseUnknown |
|||
| Primary | Unknown Approved UseUnknown |
|||
| Diagnostic | Unknown Approved UseUnknown |
|||
| Preventing | COPPER Approved UseCopper 0.4 mg/mL (Cupric Chloride Injection, USP) is indicated for use as a supplement to intravenous solutions given for total parenteral nutrition (TPN). Administration helps to maintain copper serum levels and to prevent depletion of endogenous stores and subsequent deficiency symptoms. |
|||
| Preventing | COPINOX Approved UseCopinox 4g is indicated for the prevention and treatment of copper deficiency in cattle and sheep. |
PubMed
| Title | Date | PubMed |
|---|---|---|
| Ultrasonic energy enhanced the efficiency of advance extraction methodology for enrichment of trace level of copper in serum samples of patients having neurological disorders. | 2017-07 |
|
| Comparison of the efficacy of a commercial footbath product with copper sulfate for the control of digital dermatitis. | 2017-07 |
|
| Amino acid-mediated 'turn-off/turn-on' nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. | 2017-06-15 |
|
| Folic acid-modified and functionalized CuS nanocrystal-based nanoparticles for combined tumor chemo- and photothermal therapy. | 2017-06 |
|
| Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells. | 2017-05 |
|
| Roles of Copper-Binding Proteins in Breast Cancer. | 2017-04-20 |
|
| Unusual 4-arsonoanilinium cationic species in the hydrochloride salt of (4-aminophenyl)arsonic acid and formed in the reaction of the acid with copper(II) sulfate, copper(II) chloride and cadmium chloride. | 2017-04-01 |
|
| Dissecting copper homeostasis in diabetes mellitus. | 2017-04 |
|
| Supplementation with copper edetate in control of Haemonchus contortus of sheep, and its effect on cholinesterase's and superoxide dismutase activities. | 2017-02 |
|
| A Facile Strategy for Catalyst Separation and Recycling Suitable for ATRP of Hydrophilic Monomers Using a Macroligand. | 2016-01 |
|
| CuO nanoparticles induce apoptosis by impairing the antioxidant defense and detoxification systems in the mouse hippocampal HT22 cell line: protective effect of crocetin. | 2015-06 |
|
| Effects of different sources of copper on Ctr1, ATP7A, ATP7B, MT and DMT1 protein and gene expression in Caco-2 cells. | 2014-07 |
|
| Electron induced surface reactions of organometallic metal(hfac)₂ precursors and deposit purification. | 2014-06-11 |
|
| Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. | 2014-02-26 |
|
| SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles. | 2014 |
|
| Activation of Erk and p53 regulates copper oxide nanoparticle-induced cytotoxicity in keratinocytes and fibroblasts. | 2014 |
|
| Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. | 2014 |
|
| Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties. | 2013-11-25 |
|
| Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses. | 2013-11 |
|
| The modality of cell-particle interactions drives the toxicity of nanosized CuO and TiO₂ in human alveolar epithelial cells. | 2013-10-24 |
|
| Design, synthesis, antioxidant, and anti-breast cancer activities of novel diethyl(alkyl/aryl/heteroarylamino)(4-(pyridin-2-yl)phenyl)methylphosphonates. | 2013-05 |
|
| Evaluation of topically applied copper(II) oxide nanoparticle cytotoxicity in human skin organ culture. | 2013-02 |
|
| Probing the chemical nature of dihydrogen complexation to transition metals, a gas phase case study: H2-CuF. | 2013-01-18 |
|
| CuBr2--a new multiferroic material with high critical temperature. | 2012-05-08 |
|
| Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. | 2012-04 |
|
| Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. | 2012-02 |
|
| Rapid free chlorine decay in the presence of Cu(OH)2: chemistry and practical implications. | 2011-10-15 |
|
| Expeditious synthesis of phenanthrenes via CuBr2-catalyzed coupling of terminal alkynes and N-tosylhydrazones derived from o-formyl biphenyls. | 2011-10-07 |
|
| Anti-ovulatory activity of H2 receptor blockers in albino rabbits--a preliminary study. | 2011-04 |
|
| A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. | 2010-11-03 |
|
| Copper sulfide nanoparticles for photothermal ablation of tumor cells. | 2010-10 |
|
| Insight in the transport behavior of copper glycinate complexes through the porcine gastrointestinal membrane using an Ussing chamber assisted by mass spectrometry analysis. | 2010-04 |
|
| Copper-promoted coupling of vinyl boronates and alcohols: a mild synthesis of allyl vinyl ethers. | 2010-02-03 |
|
| Copper(II) acetate-catalyzed addition of arylboronic acids to aromatic aldehydes. | 2009-01-16 |
|
| Synthesis and structural investigation of mono- and polynuclear copper complexes of 4-ethyl-1-(pyridin-2-yl) thiosemicarbazide. | 2008-11-01 |
|
| Bioavailability of copper from copper glycinate in steers fed high dietary sulfur and molybdenum. | 2008-01 |
|
| Enhanced copper release from pipes by alternating stagnation and flow events. | 2007-11-01 |
|
| A spectroscopic and thermoanalytical study of the mineral hoganite. | 2007-05 |
|
| Acute copper toxicity following copper glycinate injection. | 2006-11 |
|
| X-ray absorption spectroscopy study of a copper-containing material after thermal treatment. | 2006-04-17 |
|
| Antioxidant activity of olive pulp and olive oil phenolic compounds of the arbequina cultivar. | 2005-03-23 |
|
| Cu(II) acetate- and Mn(III) acetate-mediated radical reactions of [60]fullerene with ketonic compounds. | 2005-03-07 |
|
| Direct catalytic aldol-type reactions using RCH2CN. | 2003-08-21 |
|
| The effectiveness of ecologically acceptable ways of protection of field-grown tomato (Lycopersicon lycopersicum (L.) Karsten) from tomato late blight (Phytophthora infestans (Mont.) de Bary) in extreme weather conditions. | 2001 |
|
| Cardiopulmonary events during hemodialysis: effects of dialysis membranes and dialysate buffers. | 2000-07 |
|
| Copper Fluoride Luminescence during UV Photofragmentation of Bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)copper(II) in the Gas Phase. | 1996-08-14 |
|
| The effect of various fluoride compounds on the development of experimental root surface caries in hamsters. | 1995-12 |
|
| The genetics of tasting in mice. VII. Glycine revisited, and the chromosomal location of Sac and Soa. | 1995-10 |
|
| Efficacy of burning, tillage, and biocides in controlling bacteria released at field sites and effects on indigenous bacteria and fungi. | 1992-04 |
|
| Determination of protein by the biuret reaction using cupric hydroxide suspension reagent. | 1960 |
Patents
Sample Use Guides
In Vivo Use Guide
Sources: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a84d61a4-8e7f-4be1-aba6-f633b334aafc
Curator's Comment: Veterinary drug
Copper 0.4 mg/mL (Cupric Chloride Injection) contains 0.4 mg copper/mL and is administered intravenously only after dilution. The additive should be diluted in a volume of fluid not less than 100 mL. For the adult receiving total parenteral nutrition, the suggested additive dosage is 0.5 to 1.5 mg copper/day (1.25 to 3.75 mL/day). For pediatric patients, the suggested additive dosage is 20 mcg copper/kg/day (0.05 mL/kg/day). Infants weighing less than 1500 gm may have increased requirements because of their low body reserves and increased requirements for growth.
Route of Administration:
Intravenous
In Vitro Use Guide
Sources: https://www.ncbi.nlm.nih.gov/pubmed/27726061
Human Endometrial Stromal Cells were treated with non-toxic concentrations of copper ions (0-250 uM). mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1 were down-regulated during decidualization following the treatments with 100 or 250 uM copper ions. Meanwhile, the amount of malonaldehyde in the supernatant of cells was increased.
| Substance Class |
Chemical
Created
by
admin
on
Edited
Mon Mar 31 18:28:47 GMT 2025
by
admin
on
Mon Mar 31 18:28:47 GMT 2025
|
| Record UNII |
LRX7AJ16DT
|
| Record Status |
Validated (UNII)
|
| Record Version |
|
-
Download
| Name | Type | Language | ||
|---|---|---|---|---|
|
Common Name | English | ||
|
Preferred Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Systematic Name | English | ||
|
Systematic Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Systematic Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Systematic Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Systematic Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Systematic Name | English | ||
|
Systematic Name | English | ||
|
Systematic Name | English |
| Classification Tree | Code System | Code | ||
|---|---|---|---|---|
|
WHO-ATC |
V03AB20
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
||
|
WHO-VATC |
QV03AB20
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
||
|
CFR |
21 CFR 184.1261
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
||
|
EPA PESTICIDE CODE |
24401
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
||
|
FDA ORPHAN DRUG |
586117
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
| Code System | Code | Type | Description | ||
|---|---|---|---|---|---|
|
m3913
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | Merck Index | ||
|
C65354
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
CHEMBL604
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
31440
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
C45678
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
CONCEPT | Industrial Aid | ||
|
7758-99-8
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
copper sulfate
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
23254-43-5
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
NON-SPECIFIC STOICHIOMETRY | |||
|
Cupric sulfate
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
100000092181
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
21579
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | RxNorm | ||
|
SUB11846MIG
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
23414
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
LRX7AJ16DT
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
2968
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
DTXSID9031066
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
D019327
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
4282
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
SUB13460MIG
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
24463
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
DB06778
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY | |||
|
LRX7AJ16DT
Created by
admin on Mon Mar 31 18:28:47 GMT 2025 , Edited by admin on Mon Mar 31 18:28:47 GMT 2025
|
PRIMARY |
| Related Record | Type | Details | ||
|---|---|---|---|---|
|
|
PARENT -> SALT/SOLVATE | |||
|
ANHYDROUS->SOLVATE |
| Related Record | Type | Details | ||
|---|---|---|---|---|
|
|
ACTIVE MOIETY |