Details
Stereochemistry | ACHIRAL |
Molecular Formula | 2C6H5O7.3Zn |
Molecular Weight | 574.426 |
Optical Activity | NONE |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
[Zn++].[Zn++].[Zn++].OC(CC([O-])=O)(CC([O-])=O)C([O-])=O.OC(CC([O-])=O)(CC([O-])=O)C([O-])=O
InChI
InChIKey=WGIWBXUNRXCYRA-UHFFFAOYSA-H
InChI=1S/2C6H8O7.3Zn/c2*7-3(8)1-6(13,5(11)12)2-4(9)10;;;/h2*13H,1-2H2,(H,7,8)(H,9,10)(H,11,12);;;/q;;3*+2/p-6
Molecular Formula | C6H5O7 |
Molecular Weight | 189.0997 |
Charge | -3 |
Count |
|
Stereochemistry | ACHIRAL |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Optical Activity | NONE |
Molecular Formula | Zn |
Molecular Weight | 65.409 |
Charge | 2 |
Count |
|
Stereochemistry | ACHIRAL |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Optical Activity | NONE |
DescriptionSources: http://www.npi.gov.au/resource/zinc-and-compounds | https://www.ncbi.nlm.nih.gov/pubmed/27546855 | https://www.ncbi.nlm.nih.gov/pubmed/6353570http://www.chemistrylearner.com/zinc-hydroxide.html | http://www.lookchem.com/Zinc-hydroxide/http://www.azom.com/article.aspx?ArticleID=8415 | https://www.accessdata.fda.gov/scripts/fdcc/?set=IndirectAdditives&id=ZINCSULFIDE | http://www.imse.iastate.edu/files/2014/03/Jianqiang_Li_Master_Thesis.pdf | https://www.ncbi.nlm.nih.gov/pubmed/24477783http://www.t3db.ca/toxins/T3D0733https://www.google.com/patents/US3130034https://www.drugs.com/mtm/zinc-oxide-topical.htmlhttp://www.hmdb.ca/metabolites/HMDB01303http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125327s020lbl.pdfhttps://www.ewg.org/skindeep/ingredient/724913/ZINC_CARBONATE/# | https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=582.80 | https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=347.10 | https://www.ncbi.nlm.nih.gov/pubmed/10378806 | https://www.ncbi.nlm.nih.gov/pubmed/17633459Curator's Comment: description was created based on several sources, including
http://www.healio.com/news/print/hemonc-today/%7Bfc05fb30-107a-4753-b673-bd0e9b19881d%7D/glucarpidase-in-the-treatment-of-methotrexate-induced-nephrotoxicity
Sources: http://www.npi.gov.au/resource/zinc-and-compounds | https://www.ncbi.nlm.nih.gov/pubmed/27546855 | https://www.ncbi.nlm.nih.gov/pubmed/6353570http://www.chemistrylearner.com/zinc-hydroxide.html | http://www.lookchem.com/Zinc-hydroxide/http://www.azom.com/article.aspx?ArticleID=8415 | https://www.accessdata.fda.gov/scripts/fdcc/?set=IndirectAdditives&id=ZINCSULFIDE | http://www.imse.iastate.edu/files/2014/03/Jianqiang_Li_Master_Thesis.pdf | https://www.ncbi.nlm.nih.gov/pubmed/24477783http://www.t3db.ca/toxins/T3D0733https://www.google.com/patents/US3130034https://www.drugs.com/mtm/zinc-oxide-topical.htmlhttp://www.hmdb.ca/metabolites/HMDB01303http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125327s020lbl.pdfhttps://www.ewg.org/skindeep/ingredient/724913/ZINC_CARBONATE/# | https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=582.80 | https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=347.10 | https://www.ncbi.nlm.nih.gov/pubmed/10378806 | https://www.ncbi.nlm.nih.gov/pubmed/17633459
Curator's Comment: description was created based on several sources, including
http://www.healio.com/news/print/hemonc-today/%7Bfc05fb30-107a-4753-b673-bd0e9b19881d%7D/glucarpidase-in-the-treatment-of-methotrexate-induced-nephrotoxicity
Zinc monocarbonate (Zinc Carbonate) is an inorganic salt. In the United States, Zinc Carbonate may be used as an active ingredient in OTC drug products. When used as an active drug ingredient, the established name is Zinc Carbonate. Zinc monocarbonate is generally recognized as safe by FDA. It is used as skin protectant active ingredient. Zinc carbonate was found to retard the degradation of some poly(lactide-co-glycolide) (PLG) microspheres in vivo and in vitro. Adding Zinc Carbonate is essential during the preparation of PLGA microspheres. It can remarkably improve the stability of drugs in the acid microenvironment inside PLGA microspheres.
CNS Activity
Sources: https://www.ncbi.nlm.nih.gov/pubmed/2307275https://www.ncbi.nlm.nih.gov/pubmed/10721938http://www.healio.com/news/print/hemonc-today/%7Bfc05fb30-107a-4753-b673-bd0e9b19881d%7D/glucarpidase-in-the-treatment-of-methotrexate-induced-nephrotoxicityhttps://www.ncbi.nlm.nih.gov/pubmed/25374537 | https://www.ncbi.nlm.nih.gov/pubmed/15639165
Curator's Comment: Spatial memory deficits in a mouse model of late-onset Alzheimer's disease were caused by Zinc Carbonate supplementation. Long-term dietary administration of zinc ( Zinc Carbonate) can lead to impairments in cognitive function in rats. Microprobe synchrotron X-ray fluorescence (microSXRF) confirmed that brain zinc levels were increased by adding Zinc Carbonate to the drinking water.
Originator
Sources: https://www.webelements.com/zinc/history.htmlhttp://www.drugdevelopment-technology.com/projects/voraxaze-glucarpidase-for-the-treatment-of-toxic-plasma-methotrexate-concentrations/http://sciencing.com/uses-zinc-carbonate-7889200.html
Curator's Comment: Protherics that initially developed Voraxaze was acquired by BTG International in 2008. After the acquisition BTG International completed the development of Voraxaze and submitted the product for US approval.
Approval Year
Targets
Primary Target | Pharmacology | Condition | Potency |
---|---|---|---|
Target ID: CHEMBL612426 |
|||
Target ID: GO:0045730 Sources: https://www.ncbi.nlm.nih.gov/pubmed/8157083 |
|||
Target ID: GO:0006927 Sources: https://www.ncbi.nlm.nih.gov/pubmed/24477783 |
|||
Target ID: CHEMBL2364710 |
|||
Target ID: ultraviolet B-induced damage Sources: https://www.ncbi.nlm.nih.gov/pubmed/25947194 |
|||
Target ID: GO:0002456 Sources: https://www.ncbi.nlm.nih.gov/pubmed/24077486 |
|||
Target ID: Q9NY26 Gene ID: 27173.0 Gene Symbol: SLC39A1 Target Organism: Homo sapiens (Human) Sources: https://www.ncbi.nlm.nih.gov/pubmed/24077486 |
|||
Target ID: Q9NP94 Gene ID: 29986.0 Gene Symbol: SLC39A2 Target Organism: Homo sapiens (Human) Sources: https://www.ncbi.nlm.nih.gov/pubmed/24077486 |
Conditions
Condition | Modality | Targets | Highest Phase | Product |
---|---|---|---|---|
Preventing | Unknown Approved UseUnknown |
|||
Primary | CORTROPHIN-ZINC Approved UseTreatment of ulcerative colitis and other colonic disorders. Launch Date1955 |
|||
Primary | Unknown Approved UseUnknown |
|||
Primary | Unknown Approved UseUnknown |
|||
Primary | Unknown Approved UseUnknown |
|||
Secondary | VORAXAZE Approved UseIndicated for the treatment of toxic plasma methotrexate concentrations (>1 micromole per liter) in patients with delayed methotrexate clearance due to impaired renal function. Limitation of use: VORAXAZE is not indicated for use in patients who exhibit the expected clearance of methotrexate (plasma methotrexate concentrations within 2 standard deviations of the mean methotrexate excretion curve specific for the dose of methotrexate administered) or those with normal or mildly impaired renal function because of the potential risk of subtherapeutic exposure to methotrexate. Launch Date2012 |
|||
Primary | VUSION Approved UseINDICATIONS AND USAGE
VUSION Ointment is indicated for the adjunctive treatment of diaper dermatitis only when
complicated by documented candidiasis (microscopic evidence of pseudohyphae and/or
budding yeast), in immunocompetent pediatric patients 4 weeks and older. A positive fungal
culture for Candida albicans is not adequate evidence of candidal infection since colonization
with C. albicans can result in a positive culture. The presence of candidal infection should be
established by microscopic evaluation prior to initiating treatment.
VUSION Ointment should be used as part of a treatment regimen that includes measures
directed at the underlying diaper dermatitis, including gentle cleansing of the diaper area and
frequent diaper changes. Launch Date2006 |
|||
Primary | ZINC OXIDE Approved UseUnknown |
|||
Primary | ZINC SULFATE Approved UseUnknown Launch Date1987 |
|||
Primary | ZINC SULFATE Approved UseUnknown Launch Date1987 |
|||
Primary | ZINC SULFATE Approved UseUnknown Launch Date1987 |
|||
PubMed
Title | Date | PubMed |
---|---|---|
A medicated polycarboxylate cement to prevent complications in composite resin therapy. | 1990 Jan |
|
Topical zinc oxide treatment increases endogenous gene expression of insulin-like growth factor-1 in granulation tissue from porcine wounds. | 1994 Dec |
|
New applications for the zinc iodide-osmium tetroxide technique. | 1994 Feb |
|
SRR-SB3, a disulfide-containing macrolide that inhibits a late stage of the replicative cycle of human immunodeficiency virus. | 1997 Feb |
|
Enantioselective Cyclopropanation of Allylic Alcohols. The Effect of Zinc Iodide. | 1997 May 16 |
|
Thujaplicin-copper chelates inhibit replication of human influenza viruses. | 1998 Aug |
|
Combined effects of argon laser irradiation and fluoride treatments in prevention of caries-like lesion formation in enamel: an in vitro study. | 1999 Spring |
|
Bioavailability, biodistribution, and toxicity of BioZn-AAS(1): a new zinc source. comparative studies in rats. | 2000 Sep |
|
Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. | 2006 Dec |
|
On the mechanism of the conversion of methanol to 2,2,3-trimethylbutane (triptane) over zinc iodide. | 2006 Nov 10 |
|
Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. | 2007 May |
|
DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. | 2009 Mar 28 |
|
Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. | 2010 Dec |
|
In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. | 2010 Dec 1 |
|
Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. | 2010 Dec 15 |
|
Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. | 2010 Feb |
|
Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. | 2010 Jan 12 |
|
Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. | 2010 Jul |
|
Zinc oxide nanoparticle disruption of store-operated calcium entry in a muscarinic receptor signaling pathway. | 2010 Oct |
|
Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells. | 2011 Jul |
|
Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles. | 2011 Mar 21 |
|
Responses of human cells to ZnO nanoparticles: a gene transcription study. | 2011 Nov |
|
Zinc induces chemokine and inflammatory cytokine release from human promonocytes. | 2011 Nov 30 |
|
Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. | 2011 Sep |
|
Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. | 2012 Apr |
|
Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface. | 2012 Feb |
|
Molecular cloning, characterization of copper/zinc superoxide dismutase and expression analysis of stress-responsive genes from Eisenia fetida against dietary zinc oxide. | 2012 Mar |
|
Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. | 2012 May 5 |
|
Zinc oxide nanoparticles inhibit Ca2+-ATPase expression in human lens epithelial cells under UVB irradiation. | 2013 Dec |
|
Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry. | 2013 Jan |
|
TiO2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils. | 2013 Jul 31 |
|
Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. | 2013 Mar |
|
Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. | 2013 Nov |
|
Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties. | 2013 Nov 25 |
|
Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. | 2013 Sep |
|
Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. | 2014 Apr |
|
Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles. | 2014 Jan |
|
Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. | 2014 Jul 1 |
|
Immunomodulatory activity of zinc peroxide (ZnO₂) and titanium dioxide (TiO₂) nanoparticles and their effects on DNA and protein integrity. | 2014 May 16 |
|
Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. | 2014 May 16 |
|
ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice. | 2014 Nov 4 |
|
Ultrasonic assisted removal of sunset yellow from aqueous solution by zinc hydroxide nanoparticle loaded activated carbon: Optimized experimental design. | 2015 |
|
Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. | 2015 Apr 2 |
|
Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand. | 2015 Jan 25 |
|
Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode. | 2016 Mar 5 |
|
Spectroscopic probe to contribution of physicochemical transformations in the toxicity of aged ZnO NPs to Chlorella vulgaris: new insight into the variation of toxicity of ZnO NPs under aging process. | 2016 Oct |
|
Effects of zinc fluoride on inhibiting dentin demineralization and collagen degradation in vitro: A comparison of various topical fluoride agents. | 2016 Oct 1 |
|
Risk Assessment Study of Fluoride Salts: Probability-Impact Matrix of Renal and Hepatic Toxicity Markers. | 2016 Sep |
|
Mycobacterial carbonic anhydrase inhibition with phenolic acids and esters: kinetic and computational investigations. | 2016 Sep 21 |
|
Intense 2.7μm emission in Er(3+) doped zinc fluoride glass. | 2017 May 15 |
Patents
Sample Use Guides
In Vivo Use Guide
Sources: https://www.ncbi.nlm.nih.gov/pubmed/26892107
Rats: The dosage of zinc fluoride tetrahydrate (ZnF2 •4H2O) was adjusted to contain 2.1 mg (low-dose group, LG), 4.3 mg (mid-dose group, MG), and 5.4 mg fluoride per 200 g rat body weight (high-dose group, HG) corresponding to 5, 10, and 12.5 % of LD50 values for NaF.
Route of Administration:
Oral
In Vitro Use Guide
Sources: https://www.ncbi.nlm.nih.gov/pubmed/6583216
Prepared ground human enamel specimens were immersed in zinc fluoride solutions containing 250 and 750 ppm F- at pH 6 and 4 for 4 min.
Substance Class |
Chemical
Created
by
admin
on
Edited
Fri Dec 15 15:02:49 GMT 2023
by
admin
on
Fri Dec 15 15:02:49 GMT 2023
|
Record UNII |
K72I3DEX9B
|
Record Status |
Validated (UNII)
|
Record Version |
|
-
Download
Name | Type | Language | ||
---|---|---|---|---|
|
Official Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English | ||
|
Common Name | English |
Classification Tree | Code System | Code | ||
---|---|---|---|---|
|
DSLD |
137 (Number of products:9660)
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
Code System | Code | Type | Description | ||
---|---|---|---|---|---|
|
DTXSID90889427
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
208-901-2
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
DB11154
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
SUB15754MIG
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
C84247
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
K72I3DEX9B
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
C1505
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
CONCEPT | Dietary Supplement | ||
|
236911
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | RxNorm | ||
|
m11603
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | Merck Index | ||
|
100000089512
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
11023
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
K72I3DEX9B
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY | |||
|
546-46-3
Created by
admin on Fri Dec 15 15:02:49 GMT 2023 , Edited by admin on Fri Dec 15 15:02:49 GMT 2023
|
PRIMARY |
Related Record | Type | Details | ||
---|---|---|---|---|
|
SOLVATE->ANHYDROUS | |||
|
PARENT -> SALT/SOLVATE | |||
|
SOLVATE->ANHYDROUS | |||
|
PARENT -> SALT/SOLVATE |
Related Record | Type | Details | ||
---|---|---|---|---|
|
ACTIVE MOIETY |