Stereochemistry | ABSOLUTE |
Molecular Formula | C15H14O6 |
Molecular Weight | 290.2681 |
Optical Activity | ( + ) |
Defined Stereocenters | 2 / 2 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
O[C@H]1CC2=C(O[C@@H]1C3=CC(O)=C(O)C=C3)C=C(O)C=C2O
InChI
InChIKey=PFTAWBLQPZVEMU-DZGCQCFKSA-N
InChI=1S/C15H14O6/c16-8-4-11(18)9-6-13(20)15(21-14(9)5-8)7-1-2-10(17)12(19)3-7/h1-5,13,15-20H,6H2/t13-,15+/m0/s1
Molecular Formula | C15H14O6 |
Molecular Weight | 290.2681 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ABSOLUTE |
Additional Stereochemistry | No |
Defined Stereocenters | 2 / 2 |
E/Z Centers | 0 |
Optical Activity | UNSPECIFIED |
Cianidanol is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. One of the polyphenols present in green tea, (+)-catechin (Cianidanol), has been studied for its effects on animal models of hepatitis, as well as in human clinical studies. Pure (+)-catechin (also known as (+)- cyanidanol-3 – trade name Catergen) has been used to treat hepatitis since 1976. This compound has been shown to be an efficient immune stimulator, promoting activation of macrophages, cytotoxic-T-lymphocytes, and natural killer cells in mice. Several clinical studies demonstrate the effectiveness of (+)-catechin in the treatment of viral hepatitis. Pure (+)-catechin has been found to cause hemolysis in some patients, possibly by the promotion of antibody formation against (+)-catechin, which might cross-react with red blood cells. However, there are no reports in the literature of green tea, green tea extracts, or green tea polyphenols causing this side-effect.