Stereochemistry | ACHIRAL |
Molecular Formula | C31H27F2N5O3S2 |
Molecular Weight | 619.705 |
Optical Activity | NONE |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
COCCNCC1=CN=C(C=C1)C2=CC3=NC=CC(OC4=CC=C(NC(=S)NC(=O)CC5=CC=C(F)C=C5)C=C4F)=C3S2
InChI
InChIKey=YRCHYHRCBXNYNU-UHFFFAOYSA-N
InChI=1S/C31H27F2N5O3S2/c1-40-13-12-34-17-20-4-8-24(36-18-20)28-16-25-30(43-28)27(10-11-35-25)41-26-9-7-22(15-23(26)33)37-31(42)38-29(39)14-19-2-5-21(32)6-3-19/h2-11,15-16,18,34H,12-14,17H2,1H3,(H2,37,38,39,42)
Molecular Formula | C31H27F2N5O3S2 |
Molecular Weight | 619.705 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ACHIRAL |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Optical Activity | NONE |
Glesatinib (MGCD265) is an orally bioavailable, small-molecule, multitargeted tyrosine kinase inhibitor with potential antineoplastic activity. Glesatinib binds to and inhibits the phosphorylation of several receptor tyrosine kinases (RTKs), including the c-Met receptor (hepatocyte growth factor receptor); the Tek/Tie-2 receptor; vascular endothelial growth factor receptor (VEGFR) types 1, 2, and 3; and the macrophage-stimulating 1 receptor (MST1R or RON). Inhibition of these RTKs and their downstream signaling pathways may result in the inhibition of tumor angiogenesis and tumor cell proliferation in tumors overexpressing these RTKs. Studies in a gastric cancer xenograft model revealed that, in addition to the typically reported cellular activities, glesatinib in combination with erlotinib disrupted the glycolysis pathway, suggesting a novel mechanism of action for this drug. Glesatinib has been studied in a variety of advanced solid tumors including NSCLC, as a monotherapy and in combination with either docetaxel or erlotinib. In an ongoing phase 1 study in patients with MET positive or AXL-rearranged advanced solid tumors, glesatinib demonstrated preliminary single-agent activity, with all three patients with MET dysregulated NSCLC (two with METex14 alterations and one with increased GCN) showing significant tumor regression at the first assessment. A phase 2 study is currently recruiting patients with MET-dysregulated (mutated or amplified) advanced or metastatic NSCLC.