Stereochemistry | RACEMIC |
Molecular Formula | C12H18N2O2S |
Molecular Weight | 254.349 |
Optical Activity | ( + / - ) |
Defined Stereocenters | 0 / 1 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
CCCC(C)C1(CC=C)C(=O)NC(=S)NC1=O
InChI
InChIKey=XLOMZPUITCYLMJ-UHFFFAOYSA-N
InChI=1S/C12H18N2O2S/c1-4-6-8(3)12(7-5-2)9(15)13-11(17)14-10(12)16/h5,8H,2,4,6-7H2,1,3H3,(H2,13,14,15,16,17)
Molecular Formula | C12H18N2O2S |
Molecular Weight | 254.349 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | RACEMIC |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 1 |
E/Z Centers | 0 |
Optical Activity | ( + / - ) |
Thiamylal is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. Thiamylal, a barbiturate, is used in combination with acetaminophen or aspirin and caffeine for its sedative and relaxant effects in the treatment of tension headaches, migraines, and pain. Barbiturates act as nonselective depressants of the central nervous system (CNS), capable of producing all levels of CNS mood alteration from excitation to mild sedation, hypnosis, and deep coma. In sufficiently high therapeutic doses, barbiturates induce anesthesia. Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged.
CNS Activity
Originator
Approval Year
Doses
AEs
Overview
CYP3A4 | CYP2C9 | CYP2D6 | hERG |
---|---|---|---|
OverviewOther
Other Inhibitor | Other Substrate | Other Inducer |
---|---|---|
Drug as perpetrator
Drug as victim
Sourcing
PubMed
Patents
Sample Use Guides
In human medicine, thiamylal is used by the intravenous route as a 2.5% solution at an average dose ranging from 1 to 10 mg/kg bw.
Route of Administration:
Intravenous
In helical strips of dog cerebral, coronary, mesenteric, renal, and femoral arteries, the addition of thiamylal and thiopental, 10(-5) to 10(-3) M, caused a dose-related contraction.The persistent contraction was potentiated by 10(-4) M thiamylal but abolished at 10(-3) M. In the mesenteric artery soaked in Ca++-free media, the addition of Ca++ produced only a slight contraction, which was potentiated by thiamylal (10(-4) and 10(-3) M).