U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ABSOLUTE
Molecular Formula C22H24N2O8.6H2O
Molecular Weight 552.5262
Optical Activity UNSPECIFIED
Defined Stereocenters 5 / 5
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of TETRACYCLINE HEXAHYDRATE

SMILES

O.O.O.O.O.O.[H][C@@]12C[C@@]3([H])C(C(=O)C4=C(O)C=CC=C4[C@@]3(C)O)=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@H]2N(C)C

InChI

InChIKey=HWXNFNFOVOUBQU-LPSBUFGUSA-N
InChI=1S/C22H24N2O8.6H2O/c1-21(31)8-5-4-6-11(25)12(8)16(26)13-9(21)7-10-15(24(2)3)17(27)14(20(23)30)19(29)22(10,32)18(13)28;;;;;;/h4-6,9-10,15,25,27-28,31-32H,7H2,1-3H3,(H2,23,30);6*1H2/t9-,10-,15-,21+,22-;;;;;;/m0....../s1

HIDE SMILES / InChI
Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

Originator

Curator's Comment: References retrieved from https://www.ncbi.nlm.nih.gov/pubmed/13117662 # Pfizer and Lederle Laboratories

Approval Year

Targets

Targets

Primary TargetPharmacologyConditionPotency
Conditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Curative
TETRACYCLINE HYDROCHLORIDE

Approved Use

Tetracycline is indicated in the treatment of infections caused by susceptible strains of the designated organisms in the conditions listed below: • Upper respiratory tract infections caused by Streptococcus pyogenes, Streptococcus pneumoniae and Hemophilus influenzae. Note: Tetracycline should not be used for streptococcal disease unless the organism has been demonstrated to be susceptible. • Lower respiratory tract infections caused by Streptococcus pyogenes, Streptococcus pneumoniae, Mycoplasma pneumoniae (Eaton agent, and Klebsiella sp.) • Skin and soft tissue infections caused by Streptococcus pyogenes, Staphylococcus aureaus. (Tetracyclines are not the drugs of choice in the treatment of any type of staphylococcal infections.) • Infections caused by rickettsia including Rocky Mountain spotted fever, typhus group infections, Q fever, rickettsialpox. • Psittacosis caused by Chlamydophila psittaci. • Infections caused by Chlamydia trachomatis such as uncomplicated urethral, endocervical or rectal infections, inclusion conjunctivitis, trachoma, and lymphogranuloma venereum. • Granuloma inquinale caused by Klebsiella granulomatis. • Relapsing fever caused by Borrelia sp. • Bartonellosis caused by Bartonella bacilliformis. • Chancroid caused by Hemophilus ducreyi. • Tularemia caused by Francisella tularensis. • Plaque caused by Yersinia pestis. • Cholera caused by Vibrio cholerae. • Brucellosis caused by Brucella species (tetracycline may be used in conjunction with an aminoglycoside). • Infections due to Campylobacter fetus. • As adjunctive therapy in intestinal amebiasis caused by Entamoeba histolytica. • Urinary tract infections caused by susceptible strains of Escherichia coli, Klebsiella, etc. • Other infections caused by susceptible gram-negative organisms such as E. coli, Enterobacter aerogenes, Shigella sp., Acinetobacter sp., Klebsiella sp., and Bacteroides sp. • In severe acne, adjunctive therapy with tetracycline may be useful. When penicillin is contraindicated, tetracyclines are alternative drugs in the treatment of the following infections: • Syphilis and yaws caused by Treponema pallidum and pertenue, respectively, • Vincent’s infection caused by Fusobacterium fusiforme, • Infections caused by Neisseria gonorrhoeae, • Anthrax caused by Bacillus anthracis, • Infections due to Listeria monocytogenes, • Actinomycosis caused by Actinomyces species, • Infections due to Clostridium species.

Launch Date

1953
Cmax

Cmax

ValueDoseCo-administeredAnalytePopulation
2 μg/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
2.6 μg/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
2.7 μg/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: HIGH-FAT
4.5 μg/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
4.5 μg/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
4.1 μg/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
2.5 μg/mL
300 mg single, oral
dose: 300 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
AUC

AUC

ValueDoseCo-administeredAnalytePopulation
27.27 μg × h/mL
300 mg 2 times / day steady-state, oral
dose: 300 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
TETRACYCLINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
25.5 μg × h/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
27 μg × h/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
31.7 μg × h/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: HIGH-FAT
55.7 μg × h/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
56.6 μg × h/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
74.7 μg × h/mL
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
26.91 μg × h/mL
300 mg single, oral
dose: 300 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
T1/2

T1/2

ValueDoseCo-administeredAnalytePopulation
7.2 h
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
5.6 h
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
6.2 h
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: HIGH-FAT
6.7 h
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
6.1 h
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
8.1 h
500 mg single, oral
dose: 500 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE serum
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
7.85 h
300 mg single, oral
dose: 300 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
TETRACYCLINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FASTED
Doses

Doses

DosePopulationAdverse events​
1000 mg 1 times / day multiple, oral
Recommended
Dose: 1000 mg, 1 times / day
Route: oral
Route: multiple
Dose: 1000 mg, 1 times / day
Sources:
unhealthy, 14 - 35 years
n = 31
Health Status: unhealthy
Condition: acne
Age Group: 14 - 35 years
Sex: M+F
Population Size: 31
Sources:
2.2 |500 mg/mL|mg 2 times / day multiple, topical|oral (complex)
Dose: 2.2 |500 mg/mL|mg, 2 times / day
Route: topical|oral
Route: multiple
Dose: 2.2 |500 mg/mL|mg, 2 times / day
Sources:
unhealthy, 14 - 35 years
n = 36
Health Status: unhealthy
Condition: acne
Age Group: 14 - 35 years
Sex: M+F
Population Size: 36
Sources:
Other AEs: Discoloration skin...
Other AEs:
Discoloration skin
Sources:
250 mg 4 times / day multiple, oral
Recommended
Dose: 250 mg, 4 times / day
Route: oral
Route: multiple
Dose: 250 mg, 4 times / day
Sources:
unhealthy, 38 years
n = 1
Health Status: unhealthy
Condition: pharyngitis
Age Group: 38 years
Sex: M
Population Size: 1
Sources:
Disc. AE: Mucosal ulceration...
AEs leading to
discontinuation/dose reduction:
Mucosal ulceration (1 patient)
Sources:
7 g multiple, intrapleural (total)
Overdose
Dose: 7 g
Route: intrapleural
Route: multiple
Dose: 7 g
Sources:
unhealthy, 41 years
n = 1
Health Status: unhealthy
Age Group: 41 years
Sex: M
Population Size: 1
Sources:
Disc. AE: Pleural disorder...
AEs leading to
discontinuation/dose reduction:
Pleural disorder
Sources:
2 % 2 times / day multiple, intralesional
Dose: 2 %, 2 times / day
Route: intralesional
Route: multiple
Dose: 2 %, 2 times / day
Sources:
unhealthy, 63 years (range: 53–72 years)
n = 21
Health Status: unhealthy
Condition: lower eyelid festoons
Age Group: 63 years (range: 53–72 years)
Sex: M+F
Population Size: 21
Sources:
AEs

AEs

AESignificanceDosePopulation
Discoloration skin
2.2 |500 mg/mL|mg 2 times / day multiple, topical|oral (complex)
Dose: 2.2 |500 mg/mL|mg, 2 times / day
Route: topical|oral
Route: multiple
Dose: 2.2 |500 mg/mL|mg, 2 times / day
Sources:
unhealthy, 14 - 35 years
n = 36
Health Status: unhealthy
Condition: acne
Age Group: 14 - 35 years
Sex: M+F
Population Size: 36
Sources:
Mucosal ulceration 1 patient
Disc. AE
250 mg 4 times / day multiple, oral
Recommended
Dose: 250 mg, 4 times / day
Route: oral
Route: multiple
Dose: 250 mg, 4 times / day
Sources:
unhealthy, 38 years
n = 1
Health Status: unhealthy
Condition: pharyngitis
Age Group: 38 years
Sex: M
Population Size: 1
Sources:
Pleural disorder Disc. AE
7 g multiple, intrapleural (total)
Overdose
Dose: 7 g
Route: intrapleural
Route: multiple
Dose: 7 g
Sources:
unhealthy, 41 years
n = 1
Health Status: unhealthy
Age Group: 41 years
Sex: M
Population Size: 1
Sources:
Overview

Overview

CYP3A4CYP2C9CYP2D6hERG


OverviewOther

Other InhibitorOther SubstrateOther Inducer



Drug as perpetrator​

Drug as perpetrator​

TargetModalityActivityMetaboliteClinical evidence
yes [IC50 29 uM]
Drug as victim
Sourcing

Sourcing

Vendor/AggregatorIDURL
PubMed

PubMed

TitleDatePubMed
Iliacus haematoma syndrome as a complication of anticoagulant therapy.
1968 Oct 12
Protective effect of ascorbic acid, isoascorbic acid and mannitol against tetracycline-induced nephrotoxicity.
1971 Jul
Benign intracranial hypertension. Sequel to tetracycline therapy in a child.
1971 May 31
Benign intracranial hypertension after antibiotic therapy.
1972 Jul 1
Megaloblastic anemia associated with long-term tetracycline therapy. Report of a case.
1973 Jun
Benign intracranial hypertension following tetracycline therapy.
1975 Jul
Mechanisms in acute oliguric renal failure induced by tetracycline infusion.
1975 Nov
[Tetracyclin intoxication versus idiopathic pancreatitis: report of a case with multiple organ involvement (author's transl)].
1979
Acne.
1979 Dec
Tetracycline-induced aplastic anemia.
1979 Mar
Congenital heart disease in relation to maternal use of Bendectin and other drugs in early pregnancy.
1985 Aug 8
Hemolytic anemia after tetracycline therapy.
1985 Mar 28
Minor complication of thyroid cyst sclerosis with tetracycline.
1986 Jan
Anosmia after doxycycline use.
1990 Apr 16
Protective activity of tetracycline analogs against the cytopathic effect of the human immunodeficiency viruses in CEM cells.
1990 Jan-Feb
Pediatric chest pain induced by tetracycline ingestion.
1999 Jun
In vitro activity of 11 antimicrobial agents, including gatifloxacin and GAR936, tested against clinical isolates of Mycobacterium marinum.
2002 Feb
Antimicrobial and anti-lipase activity of quercetin and its C2-C16 3-O-acyl-esters.
2002 Feb
Comparison of the in vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria.
2002 Oct
Genomic cluster and network analysis for predictive screening for hepatotoxicity.
2006 Dec
Newer tetracycline derivatives: synthesis, anti-HIV, antimycobacterial activities and inhibition of HIV-1 integrase.
2007 Apr 15
Sclerotherapy of idiopathic hydroceles and epididymal cysts: a historical comparison trial of 5% phenol versus tetracycline.
2007 Dec
Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter.
2007 Dec
Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells.
2007 Mar
Synthesis and in vitro evaluation of targeted tetracycline derivatives: effects on inhibition of matrix metalloproteinases.
2007 Mar 15
A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine.
2008 Aug
[Protective effect of bicyclol against acute fatty liver induced by tetracycline in mice].
2008 Jan
Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature.
2010 Sep
Fluorocyclines. 1. 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent.
2012 Jan 26
Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription.
2013 Feb 15
Evaluation of aggregating brain cell cultures for the detection of acute organ-specific toxicity.
2013 Jun
Model steatogenic compounds (amiodarone, valproic acid, and tetracycline) alter lipid metabolism by different mechanisms in mouse liver slices.
2014
A simple transcriptomic signature able to predict drug-induced hepatic steatosis.
2014 Apr
Multiparametric assay using HepaRG cells for predicting drug-induced liver injury.
2015 Jul 2
Patents

Sample Use Guides

TETRACYCLINE HYDROCHLORIDE - tetracycline hydrochloride capsule Adults: Usual daily dose, 1 gram as 500 mg twice a day or 250 mg four times a day. Higher doses such as 500 mg four times a day may be required for severe infections or for those infections which do not respond to the smaller doses. For pediatric patients above eight years of age: Usual daily dose, 10 mg/lb to 20 mg/lb (25mg/kg to 50 mg/kg) body weight divided in four equal doses. TETRACYCLINE VISION 10 mg/g eye ointment Adults and children: depending on the severity of condition, a strip of the eye ointment with length of 1 – 1.5 cm is inserted into the conjunctival fold of the lower eyelid 3 - 4 times daily and in more severe cases, up to 6 times daily.
Route of Administration: Other
Standard tetracycline powders should provide the following range of Minimal Inhibitory Concentration values: Enterococcus faecalis ATCC 29212 8 - 32 mcg/mL Escherichia coli ATCC 25922 0.5 - 2 mcg/mL Haemophilus influenzae ATCC 49247 4 - 32 mcg/mL Mycoplasma pneumoniae ATCC 29342 0.06-0.5 mcg/mL Staphylococcus aureus ATCC 29213 0.12 - 1 mcg/mL Streptococcus pneumoniae ATCC 49619 0.06 - 0.5 mcg/mL
Name Type Language
TETRACYCLINE HEXAHYDRATE
Common Name English
Code System Code Type Description
PUBCHEM
71587208
Created by admin on Fri Dec 15 15:26:33 GMT 2023 , Edited by admin on Fri Dec 15 15:26:33 GMT 2023
PRIMARY
CAS
60644-93-1
Created by admin on Fri Dec 15 15:26:33 GMT 2023 , Edited by admin on Fri Dec 15 15:26:33 GMT 2023
PRIMARY
FDA UNII
7D3LAT01HT
Created by admin on Fri Dec 15 15:26:33 GMT 2023 , Edited by admin on Fri Dec 15 15:26:33 GMT 2023
PRIMARY