U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (ABSOLUTE)

MK-3118 is an orally active inhibitor of fungal β-(1,3)-glucan synthase patented by Merck Sharp & Dohme Corp for the treatment of fungal infections. MK-3118 demonstrated enhanced efficacy for most C. albicans and C. glabrata ER isolates relative to caspofungin. MK-3118 showed no or poor activity against Mucoromycotina and Fusarium spp. However, MK-3118 was highly active against Paecilomyces variotii and was the only compound displaying some activity against notoriously pan-resistant Scedosporium prolificans.
Status:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Benznidazole is an antiparasitic medication used in first-line treatment of Chagas disease. Benznidazole is a nitroimidazole antiparasitic with good activity against acute infection with Trypanosoma cruzi, commonly referred to as Chagas disease. Like other nitroimidazoles, benznidazole's main mechanism of action is to generate radical species which can damage the parasite's DNA or cellular machinery. Under anaerobic conditions, the nitro group of nitroimidazoles is believed to be reduced by the pyruvate:ferredoxin oxidoreductase complex to create a reactive nitro radical species. The nitro radical can then either engage in other redox reactions directly or spontaneously give rise to a nitrite ion and imidazole radical instead. In mammals, the principal mediators of electron transport are NAD+/NADH and NADP+/NADPH, which have a more positive reduction potential and so will not reduce nitroimidazoles to the radical form. This limits the spectrum of activity of nitroimidazoles so that host cells and DNA are not also damaged. This mechanism has been well-established for 5-nitroimidazoles such as metronidazole, but it is unclear if the same mechanism can be expanded to 2-nitroimidazoles (including benznidazole). In the presence of oxygen, by contrast, any radical nitro compounds produced will be rapidly oxidized by molecular oxygen, yielding the original nitroimidazole compound and a superoxide anion in a process known as "futile cycling". In these cases, the generation of superoxide is believed to give rise to other reactive oxygen species. The degree of toxicity or mutagenicity produced by these oxygen radicals depends on cells' ability to detoxify superoxide radicals and other reactive oxygen species. In mammals, these radicals can be converted safely to hydrogen peroxide, meaning benznidazole has very limited direct toxicity to human cells. In Trypanosoma species, however, there is a reduced capacity to detoxify these radicals, which results in damage to the parasite's cellular machinery. Benznidazole has a significant activity during the acute phase of Chagas disease, with a therapeutical success rate up to 80%. Its curative capabilities during the chronic phase are, however, limited. Some studies have found parasitologic cure (a complete elimination of T. cruzi from the body) in pediatric and young patients during the early stage of the chronic phase, but overall failure rate in chronically infected individuals is typically above 80%. However, some studies indicate treatment with benznidazole during the chronic phase, even if incapable of producing parasitologic cure, because it reduces electrocardiographic changes and a delays worsening of the clinical condition of the patient. Side effects tend to be common and occur more frequently with increased age. The most common adverse reactions associated with benznidazole are allergic dermatitis and peripheral neuropathy. It is reported that up to 30% of people will experience dermatitis when starting treatment. Benznidazole may cause photosensitization of the skin, resulting in rashes. Rashes usually appear within the first 2 weeks of treatment and resolve over time. In rare instances, skin hypersensitivity can result in exfoliative skin eruptions, edema, and fever. Peripheral neuropathy may occur later on in the treatment course and is dose-dependent. Other adverse reactions include anorexia, weight loss, nausea, vomiting, insomnia, and dyslexia, and bone marrow suppression. Gastrointestinal symptoms usually occur during the initial stages of treatment and resolves over time. Bone marrow suppression has been linked to the cumulative dose exposure.
Paliperidone (9-OH-risperidone) is the primary active metabolite of the older antipsychotic risperidone. While its specific mechanism of action is unknown, it is believed that paliperidone and risperidone act via similar if not the same pathways. It has been proposed that the drug's therapeutic activity in schizophrenia is mediated through a combination of central dopamine Type 2 (D2) and serotonin Type 2 (5HT2A) receptor antagonism. Paliperidone is also active as an antagonist at alpha 1 and alpha 2 adrenergic receptors and H1 histaminergic receptors, which may explain some of the other effects of the drug. Paliperidone was approved by the FDA for treatment of schizophrenia on December 20, 2006. Very common adverse effects are: headache, tachycardia, somnolence and insomnia.
Lopinavir (ABT-378) is an antiretroviral of the protease inhibitor class. It is used against HIV infections as a fixed-dose combination with another protease inhibitor, ritonavir, under the trade names Kaletra.
Status:
First approved in 1997

Class (Stereo):
CHEMICAL (ABSOLUTE)



Repaglinide is antidiabetic drug, which is sold under several names including, Prandin in the U.S., Surepost in Japan and GlucoNorm in Canada. It is an oral blood glucose-lowering drug of the meglitinide class used in the management of type 2 diabetes mellitus (also known as non-insulin dependent diabetes mellitus or NIDDM). Repaglinide lowers blood glucose levels by stimulating the release of insulin from the pancreas. This action is dependent upon functioning beta (ß) cells in the pancreatic islets. Insulin secretion by pancreatic β cells is partly controlled by cellular membrane potential. Membrane potential is regulated through an inverse relationship between the activity of cell membrane ATP-sensitive potassium channels (ABCC8) and extracellular glucose concentrations. Extracellular glucose enters the cell via GLUT2 (SLC2A2) transporters. Once inside the cell, glucose is metabolized to produce ATP. High concentrations of ATP inhibit ATP-sensitive potassium channels causing membrane depolarization. High glucose concentrations cause ATP-sensitive potassium channels to close resulting in membrane depolarization and opening of L-type calcium channels. The influx of calcium ions stimulates calcium-dependent exocytosis of insulin granules. Repaglinide closes ATP-dependent potassium channels in the ß-cell membrane by binding at characterizable sites. This potassium channel blockade depolarizes the ß-cell, which leads to an opening of calcium channels. The resulting increased calcium influx induces insulin secretion. The ion channel mechanism is highly tissue selective with low affinity for heart and skeletal muscle. Repaglinide is completely metabolized by oxidative biotransformation and direct conjugation with glucuronic acid after either an IV or oral dose.
Nevirapine is a non-nucleoside reverse transcriptase inhibitor (nNRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). HIV-2 RT and eukaryotic DNA polymerases (such as human DNA polymerases alpha, beta, or sigma) are not inhibited by nevirapine. Nevirapine is, in general, only prescribed after the immune system has declined and infections have become evident. It is always taken with at least one other HIV medication such as Retrovir or Videx. The virus can develop resistance to nevirapine if the drug is taken alone, although even if used properly, nevirapine is effective for only a limited time. Nevirapine binds directly to reverse transcriptase (RT) and blocks the RNA-dependent and DNA-dependent DNA polymerase activities by causing a disruption of the enzyme's catalytic site. The activity of nevirapine does not compete with template or nucleoside triphosphates. Nevirapine is used for use in combination with other antiretroviral drugs in the ongoing treatment of HIV-1 infection.
Risperidone, a benzisoxazole derivative, is an atypical antipsychotic drug with high affinity for 5-hydrotryptamine (5-HT) and dopamine D2 receptors. It is FDA approved for the treatment of schizophrenia, bipolar mania, irritability associated with autistic disorder. Carbamazepine and other enzyme inducers decrease plasma concentrations of risperidone. Vice versa, Fluoxetine, paroxetine, and other CYP 2D6 enzyme inhibitors increase plasma concentrations of risperidone. Common adverse reactions include increased mortality in elderly patients with dementia-related psychosis, cerebrovascular adverse events, including stroke, in elderly patients with dementia-related psychosis, neuroleptic malignant syndrome, tardive dyskinesia , metabolic Changes (hyperglycemia and diabetes mellitus, dyslipidemia, weight gain), hyperprolactinemia, orthostatic hypotension, leukopenia, neutropenia, agranulocytosis, potential for cognitive and motor impairment, seizures, dysphagia, priapism, disruption of body temperature regulation.
Status:
First approved in 1990
Source:
DIFLUCAN IN SODIUM CHLORIDE 0.9% by PFIZER
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Fluconazole, a synthetic antifungal agent of the imidazole class, is used to treat vaginal candidiasis. It inhibits the fungal lanosterol 14 alpha-demethylase which thereby prevents the formation of ergosterol which is an essential component in the fungal cell membrane. Indicated for the treatment of fungal infections.
Status:

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


ALBENZA (albendazole) is an orally administered anthelmintic drug. Chemically, it is methyl 5¬ (propylthio)-2-benzimidazolecarbamate, is indicated to treatment of parenchymal neurocysticercosis due to active lesions caused by larval forms of the pork tapeworm, Taenia solium. In addition, treatment of cystic hydatid disease of the liver, lung, and peritoneum, caused by the larval form of the dog tapeworm, Echinococcus granulosus. Albendazole binds to the colchicine-sensitive site of β-tubulin inhibiting their polymerization into microtubules. The decrease in microtubules in the intestinal cells of the parasites decreases their absorptive function, especially the uptake of glucose by the adult and larval forms of the parasites, and depletes glycogen storage. Insufficient glucose results in insufficient energy for the production of adenosine trisphosphate (ATP) and the parasite eventually dies. Albendazole developed in 1975. It is on the World Health Organization's List of Essential Medicines, the most important medications needed in a basic health system. The incidence of side effects reported in the published literature is very low, with only gastrointestinal side effects occurring with an overall frequency of just >1% . Albendazole's unique broad-spectrum activity is exemplified in the overall cure rates calculated from studies employing the recommended doses for hookworm (78% in 68 studies: 92%, for A. duodenale in 23 studies and 75% for N. americanus in 30 studies), A. lumbricoides (95% in 64 studies), T. trichiura (48% in 57 studies), E. vermicularis (98% in 27 studies), S. stercoralis (62% in 19 studies), H. nana (68% in 11 studies), and Taenia spp. (85% in 7 studies).
Zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Zidovudine is phosphorylated to active metabolites that compete for incorporation into viral DNA. They inhibit the HIV reverse transcriptase enzyme competitively and act as a chain terminator of DNA synthesis. The lack of a 3'-OH group in the incorporated nucleoside analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. Zidovudine, a structural analog of thymidine, is a prodrug that must be phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). It inhibits the activity of HIV-1 reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. It competes with the natural substrate dGTP and incorporates itself into viral DNA. It is also a weak inhibitor of cellular DNA polymerase α and γ. Zidovudine is used in combination with other antiretroviral agents for the treatment of human immunovirus (HIV) infections. Zidovudine is marketed as Retrovir.