U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Status:
US Approved OTC
Source:
21 CFR 331.11(e) antacid:citrate-containing citrate (containing active ingredients: citrate ion, as citric acid or salt)
Source URL:
First marketed in 1921
Source:
Potassium Citrate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Potassium citrate is indicated for the management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, uric acid lithiasis with or without calcium stones. WhenPotassium citrate is given orally, the metabolism of absorbed citrate produces an alkaline load. The induced alkaline load in turn increases urinary pH and raises urinary citrate by augmenting citrate clearance without measurably altering ultrafilterable serum citrate. Thus, potassium citrate therapy appears to increase urinary citrate principally by modifying the renal handling of citrate, rather than by increasing the filtered load of citrate. Potassium citrate is used as a food additive (E 332) to regulate acidity.
Status:
Investigational
Source:
INN:epelsiban [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Epelsiban (GSK557296), a pyridyl-2,5-diketopiperazine, is a potent, highly selective, and orally bioavailable non-peptide oxytocin receptor antagonist. GlaxoSmithKline was developing epelsiban for the treatment of women infertility due to adenomyosis and premature ejaculation.
Status:
Investigational
Source:
INN:relcovaptan
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Relcovaptan is a potent, orally active nonpeptide vasopressin V1a antagonist that was undergoing clinical development with Sanofi-Synthélabo (formerly Sanofi) in France. SR49059 is specifically and selectively antagonizes the effect of vasopressin on the V1a receptor in animals’ and in humans. The drug has been shown to have an excellent safety profile in single and repeated dose toxicological studies in animals. In the human uterus in vitro, SR49059 caused a dose-dependent inhibition of vasopressin V1a receptor-mediated activity of myometrial strips and isolated uterine arteries. In vivo in nonpregnant women, an inhibition of vasopressin-induced uterine activity has been observed.
Status:
Other

Class (Stereo):
CHEMICAL (EPIMERIC)

More than a century ago, Sir Henry Dale demonstrated that a component of the pituitary causes contractions of the mammalian uterus, hence his coining the term “oxytocic,” derived from the Greek for “quick birth,” for its activity. The discovery that a component of the pituitary causes milk secretion followed within a few years. By 1930, oxytocin was separated from vasopressin into pitocin and pitressin, respectively, at Parke Davis and made available for research. That a single peptide was responsible for these uterine and mammary actions was definitively confirmed upon the sequencing and synthesis of the peptide, 9 amino acids in length. Vincent du Vigneaud was awarded a Nobel Prize for this work. Oxytocin is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable for reasons of fetal or maternal concern, in order to achieve vaginal delivery. Oxytocin is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage. Uterine motility depends on the formation of the contractile protein actomyosin under the influence of the Ca2+- dependent phosphorylating enzyme myosin light-chain kinase. Oxytocin promotes contractions by increasing the intracellular Ca2+. Oxytocin has specific receptors in the myometrium and the receptor concentration increases greatly during pregnancy, reaching a maximum in early labor at term. The Oxytocin receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the Oxytocin system is strongly steroid dependent.
More than a century ago, Sir Henry Dale demonstrated that a component of the pituitary causes contractions of the mammalian uterus, hence his coining the term “oxytocic,” derived from the Greek for “quick birth,” for its activity. The discovery that a component of the pituitary causes milk secretion followed within a few years. By 1930, oxytocin was separated from vasopressin into pitocin and pitressin, respectively, at Parke Davis and made available for research. That a single peptide was responsible for these uterine and mammary actions was definitively confirmed upon the sequencing and synthesis of the peptide, 9 amino acids in length. Vincent du Vigneaud was awarded a Nobel Prize for this work. Oxytocin is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable for reasons of fetal or maternal concern, in order to achieve vaginal delivery. Oxytocin is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage. Uterine motility depends on the formation of the contractile protein actomyosin under the influence of the Ca2+- dependent phosphorylating enzyme myosin light-chain kinase. Oxytocin promotes contractions by increasing the intracellular Ca2+. Oxytocin has specific receptors in the myometrium and the receptor concentration increases greatly during pregnancy, reaching a maximum in early labor at term. The Oxytocin receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the Oxytocin system is strongly steroid dependent.
More than a century ago, Sir Henry Dale demonstrated that a component of the pituitary causes contractions of the mammalian uterus, hence his coining the term “oxytocic,” derived from the Greek for “quick birth,” for its activity. The discovery that a component of the pituitary causes milk secretion followed within a few years. By 1930, oxytocin was separated from vasopressin into pitocin and pitressin, respectively, at Parke Davis and made available for research. That a single peptide was responsible for these uterine and mammary actions was definitively confirmed upon the sequencing and synthesis of the peptide, 9 amino acids in length. Vincent du Vigneaud was awarded a Nobel Prize for this work. Oxytocin is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable for reasons of fetal or maternal concern, in order to achieve vaginal delivery. Oxytocin is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage. Uterine motility depends on the formation of the contractile protein actomyosin under the influence of the Ca2+- dependent phosphorylating enzyme myosin light-chain kinase. Oxytocin promotes contractions by increasing the intracellular Ca2+. Oxytocin has specific receptors in the myometrium and the receptor concentration increases greatly during pregnancy, reaching a maximum in early labor at term. The Oxytocin receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the Oxytocin system is strongly steroid dependent.