U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 22 results

Carvedilol competitively blocks β1, β2 and α1 receptors. The drug lacks sympathomimetic activity and has vasodilating properties that are exerted primarily through α1-blockade. Animal models indicate that carvedilol confers protection against myocardial necrosis, arrhythmia and cell damage caused by oxidising free radicals, and the drug has no adverse effects on plasma lipid profiles. COREG® (carvedilol) is a racemic mixture in which nonselective β-adrenoreceptor blocking activity is present in the S(-) enantiomer and α1-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilol is the first drug of its kind to be approved for the treatment of congestive heart failure, and is now the standard of care for this devastating disease. Carvedilol is also confirmed as effective in the management of mild to moderate hypertension and ischaemic heart disease.
Status:
Investigational
Source:
NCT03388788: Early Phase 1 Interventional Completed Cardiovascular Risk Factor
(2018)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (EPIMERIC)

Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

4'-Hydroxycarvedilol is a metabolite of Carvedilol. Incubation of R (+) - and S(-)-carvedilol with rat liver microsomes showed the formation of four oxidative metabolites: 1-hydroxycarvedilol (1-OHC), 8-hydroxycarvedilol (8-OHC), 4'-hydroxycarvedilol (4'-OHC), and O-desmethylcarvedilol (DesC). From in vivo metabolism studies were obtained, that 1-OHC and 8-OHC were the major products for both enantiomers used as a substrate. Also was invented, that 4'-hydroxycarvedilol slightly more effective than carvedilol in suppressing of store overload-induced calcium release (SOICR) through the cardiac ryanodine receptor (RyR2), which can trigger ventricular arrhythmias.