U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 10 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)


Class (Stereo):
CHEMICAL (ABSOLUTE)



Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin

Class (Stereo):
CHEMICAL (ABSOLUTE)



Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin
Status:
US Previously Marketed
First approved in 1994

Class (Stereo):
CHEMICAL (ABSOLUTE)



Spirapril (Renormax) is an ACE inhibitor antihypertensive drug used to treat hypertension. Spiraprilat, the active metabolite of spirapril, competes with angiotensin I for binding at the angiotensin-converting enzyme, blocking the conversion of angiotensin I to angiotensin II. Inhibition of ACE results in decreased plasma angiotensin II. As angiotensin II is a vasoconstrictor and a negative-feedback mediator for renin activity, lower concentrations result in a decrease in blood pressure and stimulation of baroreceptor reflex mechanisms, which leads to decreased vasopressor activity and to decreased aldosterone secretion. Spiraprilat may also act on kininase II, an enzyme identical to ACE that degrades the vasodilator bradykinin.