U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 16 results


Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ramelteon was approved by the United States (U.S.) in July 2005, and the Japanese Ministry of Health, Labour and Welfare in April 2010. It is currently available in the USA and Japan as ROZEREM and is indicated for the treatment of insomnia characterized by difficulty with sleep onset. In October 7, 2011, Takeda has decided to discontinue the development of ramelteon in Europe for the treatment of insomnia in order to best optimize Takeda’s resources for its research and development activities. Ramelteon is a melatonin receptor agonist with both high affinity for melatonin MT1 and MT2 receptors and selectivity over the MT3 receptor. Ramelteon demonstrates full agonist activity in vitro in cells expressing human MT1 or MT2 receptors, and high selectivity for human MT1 and MT2 receptors compared to the MT3 receptor. The activity of ramelteon at the MT1 and MT2 receptors is believed to contribute to its sleep-promoting properties since these receptors are acted upon by endogenous melatonin and are thought to be involved in the maintenance of the circadian rhythm underlying normal sleep-wake cycles. Ramelteon has no appreciable affinity for the GABA receptor complex or for receptors that bind neuropeptides, cytokines, serotonin, dopamine, noradrenaline, acetylcholine, and opiates.
Fluvoxamine is an antidepressant which functions pharmacologically as a selective serotonin reuptake inhibitor. Though it is in the same class as other SSRI drugs, it is most often used to treat obsessive-compulsive disorder. Fluvoxamine has been in use in clinical practice since 1983 and has a clinical trial database comprised of approximately 35,000 patients. It was launched in the US in December 1994 and in Japan in June 1999. As of the end of 1995, more than 10 million patients worldwide have been treated with fluvoxamine. The exact mechanism of action of fluvoxamine has not been fully determined, but appears to be linked to its inhibition of CNS neuronal uptake of serotonin. Fluvoxamine blocks the reuptake of serotonin at the serotonin reuptake pump of the neuronal membrane, enhancing the actions of serotonin on 5HT1A autoreceptors. In-vitro studies suggest that fluvoxamine is more potent than clomipramine, fluoxetine, and desipramine as a serotonin-reuptake inhibitor. Studies have also demonstrated that fluvoxamine has virtually no affinity for α1- or α2-adrenergic, β-adrenergic, muscarinic, dopamine D2, histamine H1, GABA-benzodiazepine, opiate, 5-HT1, or 5-HT2 receptors. Fluvoxamine is used for management of depression and for Obsessive Compulsive Disorder (OCD). Has also been used in the management of bulimia nervosa. Fluvoxamine is known under the brand names: Faverin, Fevarin, Floxyfral, Dumyrox and Luvox.
Cutamesine, an agonsit of brain sigma 1 receptors, was developed by Santen Pharmaceutical for the treatment of cognitive diseases. The drug was tested in phase II in patients with major depressive disorders and for recovery of patients with stroke, however its development was terminated for the given conditions. Currently M's science corporation is developing cutamesine for Amyotrophic lateral sclerosis and Retinitis pigmentosa as more suitable target diseases.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Fluvoxamino acid is a not pharmacologically active metabolite of fluvoxamine, drug, which used for the treatment of the obsessive compulsive disorder. The metabolism of fluvoxamine to fluvoxamino acid is involved a two-step oxidation process via an alcohol intermediate, fluvoxamino alcohol. CYP2D6 is responsible for the first-step oxidation of fluvoxamine to fluvoxamino alcohol, and alcohol dehydrogenase is involved in the second-step oxidation of fluvoxamino alcohol to the corresponding carbolic acid.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Showing 1 - 10 of 16 results