{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for nitrofurantoin in Note (approximate match)
Showing 1 - 9 of 9 results
Status:
US Approved Rx
(1998)
Source:
NDA020805
(1998)
Source URL:
First approved in 1987
Source:
NDA019537
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid) is the synthetic antimicrobial agent for oral or intravenous administration. Ciprofloxacin is a member of the fluoroquinolone class of antibacterial agents. The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV (both Type II topoisomerases), which are required for bacterial DNA replication, transcription, repair, and recombination. Ciprofloxacin is used to treat a wide variety of infections, including infections of bones and joints, endocarditis, gastroenteritis, malignant otitis externa, respiratory tract infections, cellulitis, urinary tract infections, prostatitis, anthrax, and chancroid. In the United States, ciprofloxacin is pregnancy category C. This category includes drugs for which no adequate and well-controlled studies in human pregnancy exist, and for which animal studies have suggested the potential for harm to the fetus, but potential benefits may warrant use of the drug in pregnant women despite potential risks. Fluoroquinolones have been reported as present in a mother's milk and thus passed on to the nursing child. Oral and intravenous ciprofloxacin is approved by the FDA for use in children for only two indications due to the risk of permanent injury to the musculoskeletal system: Inhalational anthrax (postexposure) and Complicated urinary tract infections and pyelonephritis due to Escherichia coli.
Status:
US Approved Rx
(2010)
Source:
ANDA090828
(2010)
Source URL:
First approved in 1973
Source:
NDA017376
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trimethoprim (TMP) is an antibiotic is used for the treatment of initial episodes of uncomplicated urinary tract infections due to susceptible strains of the following organisms: Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter species, and coagulase-negative Staphylococcus species, including S. saprophyticus. Cultures and susceptibility tests should be performed to determine the susceptibility of the bacteria to trimethoprim. Therapy may be initiated prior to obtaining the results of these tests. Trimethoprim is rapidly absorbed following oral administration. It exists in the blood as unbound, protein-bound, and metabolized forms. Ten to twenty percent of trimethoprim is metabolized, primarily in the liver; the remainder is excreted unchanged in the urine. The principal metabolites of trimethoprim are the 1- and 3-oxides and the 3'- and 4'-hydroxy derivatives. The free form is considered to be the therapeutically active form. Approximately 44% of trimethoprim is bound to plasma proteins. Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. This binding is very much stronger for the bacterial enzyme than for the corresponding mammalian enzyme
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(2016)
Source:
ANDA205780
(2016)
Source URL:
First approved in 1958
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Vancomycin is a branched tricyclic glycosylated nonribosomal peptide produced by the fermentation of the Actinobacteria species Amycolatopsis orientalis (formerly Nocardia orientalis). Vancomycin became available for clinical use >50 years ago. It is often reserved as the "drug of last resort", used only after treatment with other antibiotics had failed. Vancomycin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections: Listeria monocytogenes, Streptococcus pyogenes, Streptococcus pneumoniae (including penicillin-resistant strains), Streptococcus agalactiae, Actinomyces species, and Lactobacillus species. The combination of vancomycin and an aminoglycoside acts synergistically in vitro against many strains of Staphylococcus aureus, Streptococcus bovis, enterococci, and the viridans group streptococci. The bactericidal action of vancomycin results primarily from inhibition of cell-wall biosynthesis. Specifically, vancomycin prevents the incorporation of N-acetylmuramic acid (NAM)- and N-acetylglucosamine (NAG)-peptide subunits from being incorporated into the peptidoglycan matrix; which forms the major structural component of Gram-positive cell walls. The large hydrophilic molecule is able to form hydrogen bond interactions with the terminal D-alanyl-D-alanine moieties of the NAM/NAG-peptides. Normally this is a five-point interaction. This binding of vancomycin to the D-Ala-D-Ala prevents the incorporation of the NAM/NAG-peptide subunits into the peptidoglycan matrix. In addition, vancomycin alters bacterial-cell-membrane permeability and RNA synthesis. There is no cross-resistance between vancomycin and other antibiotics. Vancomycin is not active in vitro against gram-negative bacilli, mycobacteria, or fungi.
Status:
US Approved Rx
(2023)
Source:
ANDA217272
(2023)
Source URL:
First approved in 1953
Source:
NDA009175
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Furadantin (nitrofurantoin), a synthetic chemical, is a stable, yellow, crystalline compound. Furadantin is an antibacterial agent for specific urinary tract infections. Orally administered Furadantin is readily absorbed and rapidly excreted in urine. Blood concentrations at therapeutic dosage are usually low. Unlike many drugs, the presence of food or agents delaying gastric emptying can increase the bioavailability of Furadantin, presumably by allowing better dissolution in gastric juices. Nitrofurantoin is active against some gram positive organisms such as S. aureus, S. epidermidis, S. saprophyticus, Enterococcus faecalis, S. agalactiae, group D streptococci, viridians streptococci and Corynebacterium. Its spectrum of activity against gram negative organisms includes E. coli, Enterobacter, Neisseria, Salmonella and Shigella. It may be used as an alternative to trimethoprim/sulfamethoxazole for treating urinary tract infections though it may be less effective at eradicating vaginal bacteria. May also be used in females as prophylaxis against recurrent cystitis related to coitus. Nitrofurantoin is highly stable to the development of bacterial resistance, a property thought to be due to its multiplicity of mechanisms of action. Nitrofurantoin is activated by bacterial flavoproteins (nitrofuran reductase) to active reduced reactive intermediates that are thought to modulate and damage ribosomal proteins or other macromolecules, especially DNA, causing inhibition of DNA, RNA, protein, and cell wall synthesis. The overall effect is inhibition of bacterial growth or cell death.
Status:
US Approved Rx
(1972)
Source:
ANDA061621
(1972)
Source URL:
First approved in 1952
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Erythromycin cyclocarbonate (Davercin) is a first generation semi-synthetic erythromycin. It is active against Gram-positive and some Gram-negative microorganisms. Davercin shows comparable or better in vitro potency, low host toxicity and improved pharmacokinetics compared with erythromycin. It is approved for the treatment of acne, atypical pneumonia (caused by Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila), whooping cough (treatment and prevention), urethritis (caused by Ureaplasma urealyticum and Chlamydia trachomatis), gastrointestinal infection caused by Campylobacter spp., short-term infections of the skin and soft tissues (e.g. acne, staphylococcal dermatitis). In streptococcal infections, diphtheria, gonorrhea, early syphilis in patients who are allergic to penicillin, and in the prevention of bacterial endocarditis before the planned dental procedures. Adverse effects are: nausea, vomiting, abdominal pain, diarrhea, skin allergic reactions.
Status:
US Approved Rx
(2023)
Source:
ANDA217272
(2023)
Source URL:
First approved in 1953
Source:
NDA009175
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Furadantin (nitrofurantoin), a synthetic chemical, is a stable, yellow, crystalline compound. Furadantin is an antibacterial agent for specific urinary tract infections. Orally administered Furadantin is readily absorbed and rapidly excreted in urine. Blood concentrations at therapeutic dosage are usually low. Unlike many drugs, the presence of food or agents delaying gastric emptying can increase the bioavailability of Furadantin, presumably by allowing better dissolution in gastric juices. Nitrofurantoin is active against some gram positive organisms such as S. aureus, S. epidermidis, S. saprophyticus, Enterococcus faecalis, S. agalactiae, group D streptococci, viridians streptococci and Corynebacterium. Its spectrum of activity against gram negative organisms includes E. coli, Enterobacter, Neisseria, Salmonella and Shigella. It may be used as an alternative to trimethoprim/sulfamethoxazole for treating urinary tract infections though it may be less effective at eradicating vaginal bacteria. May also be used in females as prophylaxis against recurrent cystitis related to coitus. Nitrofurantoin is highly stable to the development of bacterial resistance, a property thought to be due to its multiplicity of mechanisms of action. Nitrofurantoin is activated by bacterial flavoproteins (nitrofuran reductase) to active reduced reactive intermediates that are thought to modulate and damage ribosomal proteins or other macromolecules, especially DNA, causing inhibition of DNA, RNA, protein, and cell wall synthesis. The overall effect is inhibition of bacterial growth or cell death.
Status:
Other
Class:
CONCEPT
Status:
Other
Class:
CONCEPT