{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for nimodipine in Note (approximate match)
Showing 1 - 6 of 6 results
Status:
US Approved Rx
(2008)
Source:
NDA022156
(2008)
Source URL:
First approved in 2008
Source:
NDA022156
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Clevidipine is a dihydropyridine calcium channel blocker. Clevidipine is marketed under the trade name Cleviprex, indicated for the reduction of blood pressure (BP) when oral therapy is not feasible or not desirable. Clevidipine is a dihydropyridine L-type calcium channel blocker. L-type calcium channels mediate the influx of calcium during depolarization in arterial smooth muscle. Experiments in anesthetized rats and dogs show that clevidipine reduces mean arterial blood pressure by decreasing systemic vascular resistance. Clevidipine does not reduce cardiac filling pressure (pre-load), confirming lack of effects on the venous capacitance vessels.
Status:
US Approved Rx
(2011)
Source:
ANDA091001
(2011)
Source URL:
First approved in 1995
Source:
NDA020356
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Nisoldipine is a 1,4-dihydropyridine derivative with an outstanding vascular selectivity. As a specific calcium antagonist, it shortens the action potential and causes electromechanical uncoupling in ventricular myocardium. However, this effect, resulting in a negative inotropic action, appears at 100–1000 times higher concentrations of nisoldipine in comparison with its inhibition of calcium-dependent vascular contractions. Detailed analyses of pharmacological effects revealed additional properties such as enhancement of sodium excretion, an interaction with the reninangiotensin-aldosterone system and a protective effect against acute renal ischaemia, that may contribute to its therapeutic efficacy. Nisoldipine was developed at Bayer then licensed to Zeneca and marketed in the United States as SULAR. SULAR is indicated for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents. The mechanism of the therapeutic effect of nisoldipine is complex. It involves a decrease of the total peripheral vascular resistance (reduction of afterload) and an increase in coronary blood flow. Moreover, nisoldipine obviously normalises the impaired volume homoeostasis by improving renal function and thus reduces the need for activation of the ANP system. In the advanced stages of hypertension, nisoldipine prevents deleterious calcium overload and the resulting tissue damage.
Status:
US Approved Rx
(2023)
Source:
ANDA216327
(2023)
Source URL:
First approved in 1982
Source:
NDA018602
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Diltiazem is a nondihydropyridines calcium channel blocker used in the treatment of hypertension, angina pectoris, and some types of arrhythmia. Diltiazem produces its antihypertensive effect primarily by relaxation of vascular smooth muscle and the resultant decrease in peripheral vascular resistance.
Status:
US Approved Rx
(1989)
Source:
NDA019684
(1989)
Source URL:
First approved in 1981
Source:
NDA018482
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Nifedipine has been formulated as both a long- and short-acting 1,4-dihydropyridine calcium channel blocker. Nifedipine is sold under the brand names Adalat and Procardia among others. Nifedipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through L-type calcium channels. Calcium ions entering the cell through these channels bind to calmodulin. Calcium-bound calmodulin then binds to and activates myosin light chain kinase (MLCK). Activated MLCK catalyzes the phosphorylation of the regulatory light chain subunit of myosin, a key step in muscle contraction. Signal amplification is achieved by calcium-induced calcium release from the sarcoplasmic reticulum through ryanodine receptors. Inhibition of the initial influx of calcium inhibits the contractile processes of smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload. The vasodilatory effects of nifedipine result in an overall decrease in blood pressure. Nifedipine is used for the management of vasospastic angina, chronic stable angina, hypertension, and Raynaud's phenomenon. May be used as a first line agent for left ventricular hypertrophy and isolated systolic hypertension (long-acting agents).