{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for acetylcholine in Standardized Name (approximate match)
Status:
US Approved Rx
(1993)
Source:
NDA020213
(1993)
Source URL:
First approved in 1966
Source:
MIOCHOL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Acetylcholine is the neurotransmitter at neuromuscular junctions, at synapses in the ganglia of the visceral motor system, and at a variety of sites within the central nervous system. Whereas a great deal is known about the function of cholinergic transmission at the neuromuscular junction and at ganglionic synapses, the actions of acetylcholine in the central nervous system are not as well understood. Cholinergic system is an important system and a branch of the autonomic nervous system which plays an important role in memory, digestion, control of heart beat, blood pressure, movement and many other functions. Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity, and coordinates firing of groups of neurons. Miochol®-E (acetylcholine chloride intraocular solution) is used to obtain miosis of the iris in seconds after delivery of the lens in cataract surgery, in penetrating keratoplasty, iridectomy and other anterior segment surgery where rapid miosis may be required.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(20) weight control choline
Source URL:
First approved in 2001
Source:
Vitamin B Complex 150 by Covetrus North America
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
CHOLINE is a basic constituent of lecithin that is found in many plants and animal organs. Choline was officially recognized as an essential nutrient by the Institute of Medicine in 1998.1 Its role in the body is complex. It is needed for neurotransmitter synthesis (acetylcholine), cell-membrane signaling (phospholipids), lipid transport (lipoproteins), and methyl-group metabolism (homocysteine reduction). It is the major dietary source of methyl groups via the synthesis of S-adenosylmethionine (AdoMet). At least 50 AdoMet-dependent reactions have been identified in mammals, and it is likely that the number is much higher. Choline is required to make the phospholipids phosphatidylcholine, lysophosphatidylcholine, choline plasmalogen, and sphingomyelin—essential components for all membranes. It plays important roles in brain and memory development in the fetus and appears to decrease the risk of the development of neural tube defects. The importance of choline in the diet extends into adulthood and old age. In a study of healthy adult subjects deprived of dietary choline, 77% of the men and 80% of the postmenopausal women developed signs of subclinical organ dysfunction (fatty liver or muscle damage). Less than half of premenopausal women developed such signs. Ten percent of the subjects studied developed fatty liver, muscle damage, or both when they consumed the Adequate Intake (AI) of choline. The damage was reversed when they consumed a high-choline diet. Plasma choline concentration has been found to vary in response to diet, decreasing approximately 30 percent in humans fed a choline-deficient diet for 3 weeks. Based on estimated dietary intakes and studies reporting liver damage with lower choline intakes, the Institute of Medicine, Food and Nutrition Board set the AI for choline at 425 milligrams/per day for women aged 19 and older, and 550 milligrams/per day for men aged 19 and older.
Status:
Possibly Marketed Outside US
First approved in 2017
Source:
21 CFR 348
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Trimethylamine (or TMA) a tertiary amine, is synthesized by the action of microbial enzymes in humans. The decrease of TMA metabolism and excessive TMA excretion cause the disease trimethylaminuria and some other diseases associated with the abnormal level of TMA, e.g., obesity, diabetes, cardiovascular diseases. It was shown, that TMS is a full agonist of human trace amine-associated receptor 5, TAAR5. In addition, TMA is a precursor of N-oxide form, an emergent biomarker of human health that can lead to renal diseases, neurological disorders, and cancer.