U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
US Previously Marketed
First approved in 1986

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Pirbuterol (trade name Maxair) is a short-acting β2 adrenoreceptor agonist with bronchodilating action used in the treatment of asthma. The pharmacologic effects of beta-adrenergic agonist drugs, including pirbuterol, are at least in proof attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Pirbuterol is used in asthma for reversal of acute bronchospasm, and also as a maintenance medication to prevent future attacks. It should be used in patients 12 years of age and older with or without concurrent theophylline and/or inhaled corticosteroid. After inhalation of doses up to 800 μg (twice the maximum recommended dose) systemic blood levels of pirbuterol are below the limit of assay sensitivity (2–5 ng/ml). A mean of 51% of the dose is recovered in urine as pirbuterol plus its sulfate conjugate following administration by aerosol. Pirbuterol is not metabolized by catechol-O-methyltransferase.
Status:
US Previously Marketed
First approved in 1986

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Pirbuterol (trade name Maxair) is a short-acting β2 adrenoreceptor agonist with bronchodilating action used in the treatment of asthma. The pharmacologic effects of beta-adrenergic agonist drugs, including pirbuterol, are at least in proof attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Pirbuterol is used in asthma for reversal of acute bronchospasm, and also as a maintenance medication to prevent future attacks. It should be used in patients 12 years of age and older with or without concurrent theophylline and/or inhaled corticosteroid. After inhalation of doses up to 800 μg (twice the maximum recommended dose) systemic blood levels of pirbuterol are below the limit of assay sensitivity (2–5 ng/ml). A mean of 51% of the dose is recovered in urine as pirbuterol plus its sulfate conjugate following administration by aerosol. Pirbuterol is not metabolized by catechol-O-methyltransferase.
Status:
US Previously Marketed
First approved in 1986

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Pirbuterol (trade name Maxair) is a short-acting β2 adrenoreceptor agonist with bronchodilating action used in the treatment of asthma. The pharmacologic effects of beta-adrenergic agonist drugs, including pirbuterol, are at least in proof attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Pirbuterol is used in asthma for reversal of acute bronchospasm, and also as a maintenance medication to prevent future attacks. It should be used in patients 12 years of age and older with or without concurrent theophylline and/or inhaled corticosteroid. After inhalation of doses up to 800 μg (twice the maximum recommended dose) systemic blood levels of pirbuterol are below the limit of assay sensitivity (2–5 ng/ml). A mean of 51% of the dose is recovered in urine as pirbuterol plus its sulfate conjugate following administration by aerosol. Pirbuterol is not metabolized by catechol-O-methyltransferase.
Status:
US Previously Marketed
First approved in 1986

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Pirbuterol (trade name Maxair) is a short-acting β2 adrenoreceptor agonist with bronchodilating action used in the treatment of asthma. The pharmacologic effects of beta-adrenergic agonist drugs, including pirbuterol, are at least in proof attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Pirbuterol is used in asthma for reversal of acute bronchospasm, and also as a maintenance medication to prevent future attacks. It should be used in patients 12 years of age and older with or without concurrent theophylline and/or inhaled corticosteroid. After inhalation of doses up to 800 μg (twice the maximum recommended dose) systemic blood levels of pirbuterol are below the limit of assay sensitivity (2–5 ng/ml). A mean of 51% of the dose is recovered in urine as pirbuterol plus its sulfate conjugate following administration by aerosol. Pirbuterol is not metabolized by catechol-O-methyltransferase.