U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for ivacaftor

 
Ivacaftor (trade names KALYDECO® (ivacaftor) and ORKAMBI® (lumacaftor/ivacaftor)) is a cystic fibrosis transmembrane conductance regulator potentiator indicated for the treatment of cystic fibrosis in patients age 6 years and older who have one of the following mutations in the CFTR gene: G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N, or S549R. One such defect G551D is characterized by a dysfunctional CFTR protein on the cell surface. Although the defective protein is trafficked to the correct area, the epithelial cell surface, while there it cannot transport chloride through the channel. Ivacaftor, a CFTR potentiator, improves the transport of chloride through the ion channel by binding to the channels directly to induce a non-conventional mode of gating which in turn increases the probability that the channel is open. Ivacaftor regulates fluid flow within cells and affects the components of sweat, digestive fluids, and mucus.

Showing 1 - 10 of 14 results

Ivacaftor (trade names KALYDECO® (ivacaftor) and ORKAMBI® (lumacaftor/ivacaftor)) is a cystic fibrosis transmembrane conductance regulator potentiator indicated for the treatment of cystic fibrosis in patients age 6 years and older who have one of the following mutations in the CFTR gene: G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N, or S549R. One such defect G551D is characterized by a dysfunctional CFTR protein on the cell surface. Although the defective protein is trafficked to the correct area, the epithelial cell surface, while there it cannot transport chloride through the channel. Ivacaftor, a CFTR potentiator, improves the transport of chloride through the ion channel by binding to the channels directly to induce a non-conventional mode of gating which in turn increases the probability that the channel is open. Ivacaftor regulates fluid flow within cells and affects the components of sweat, digestive fluids, and mucus.
Tezacaftor (VX-661) is an investigational compound developed by Vertex Pharmaceuticals to treat cystic fibrosis (CF). It is an oral corrector of the CF transmembrane regulator (CFTR) and is similar to lumacaftor, another N-aryl-1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropanecarboxamide derivative developed by Vertex. Cystic fibrosis is caused by defects in CFTR gene, which encodes an epithelial chloride channel. The most common mutant Δ508CFTR is a misfolded protein that does not reach the cell membrane. VX-661 corrects trafficking of Δ508CFTR and partially restores chloride channel activity. In vitro, a combination of VX-661 and ivacaftor, an FDA approved in 2012 CFTR potentiator which increases the time the CFTR channel is open, allowing chloride ions to flow through the CFTR proteins on the surface of epithelial cells, resulted in greater CFTR activity compared with VX-661 alone. In February 2012, a phase 2, double-blind, placebo-controlled study of VX-661 was initiated in CF patients who were homozygous or heterozygous for the F508del mutation. There is an ongoing Vertex Phase 3 development program of VX-661 in combination with ivacaftor which includes four studies on CF patients 1) with two copies of the F508del mutation, 2) one copy of the F508del mutation and a second mutation that results in residual CFTR function, 3) one copy of the F508del mutation and a second mutation that results in residual CFTR function gating defect in the CFTR protein and 4) one copy of the F508del mutation and a second mutation that results in minimal CFTR function.
Lumacaftor (VX-809) is an investigational drug developed by the Massachusetts-based pharmaceutical company Vertex for the treatment of patients who suffer from cystic fibrosis (CF) and have the F508del mutation in the CF transmembrane conductance regulator (CFTR). Currently, lumacaftor is approved by the U.S. FDA as a combined oral treatment for CF in combination with Kalydeco (ivacaftor). Lumacaftor is commercialized by Vertex under the brand name Orkambi, and Kalydeco was approved in the United States in 2012. The lumacaftor/Kalydeco combo was approved by the FDA in July 2015 for patients ages 12 and older, while the use of lumacaftor alone is still being studied by Vertex. The mechanism of action of lumacaftor is based on the interference with the F508 CFTR. The chronic disease is caused by a mutation in the gene that controls the salt transportation in the cells, resulting in thick, sticky mucus in the respiratory, digestive, and reproductive systems. To address that genetic defect, lumacaftor helps correct the mutated genes with a novel therapeutic approach. Both lumicaftor and kalydeco work by correcting the misfolded CFTR protein, the root cause of the F508del mutation, which led to the approval of the combined treatment by the FDA. However, while kalydeco alone is also approved by the FDA, the use of lumacftor alone has not yet been approved.
Status:
Investigational
Source:
INN:deutivacaftor [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

CTP-656 is a deuterium-modified form of ivacaftor, an FDA-approved drug for the treatment of cystic fibrosis. CTP-656 is jointly developed by Concert Pharmaceuticals and Vertex Pharmaceuticals, and is believed to have higher metabolic stability, lower toxic byproducts and increased half-life compared to the original. CTP-656 acts as a potentiator of is a cystic fibrosis transmembrane conductance regulator (CFTR) protein. CTP-656 is investigated in phase 2 clinical trials for the treatment of cystic fibrosis.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

mixture
Status:
Possibly Marketed Outside US
Source:
Octaplasma by Octapharma Pharmazeutika Produktionsges M B H [Canada]
Source URL:

Class:
MIXTURE

Showing 1 - 10 of 14 results