U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for halobetasol propionate

 
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (ABSOLUTE)



Halobetasol Propionate is the propionate salt form of halobetasol, a synthetic corticosteroid with anti-inflammatory, antipruritic, and vasoconstrictor activities. Halobetasol, a topical steroid, diffuses across cell membranes to interact with cytoplasmic corticosteroid receptors located in both the dermal and intradermal cells, thereby activating gene expression of anti-inflammatory proteins mediated via corticosteroid receptor response element. Specifically, this agent induces phospholipase A2 inhibitory proteins, which inhibit the release of arachidonic acid, thereby inhibiting the biosynthesis of potent mediators of inflammation, such as prostaglandins and leukotrienes. As a result, halobetasol reduces edema, erythema, and pruritus through its cutaneous effects on vascular dilation and permeability. The initial interaction, however, is due to the drug binding to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes.
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (ABSOLUTE)



Halobetasol Propionate is the propionate salt form of halobetasol, a synthetic corticosteroid with anti-inflammatory, antipruritic, and vasoconstrictor activities. Halobetasol, a topical steroid, diffuses across cell membranes to interact with cytoplasmic corticosteroid receptors located in both the dermal and intradermal cells, thereby activating gene expression of anti-inflammatory proteins mediated via corticosteroid receptor response element. Specifically, this agent induces phospholipase A2 inhibitory proteins, which inhibit the release of arachidonic acid, thereby inhibiting the biosynthesis of potent mediators of inflammation, such as prostaglandins and leukotrienes. As a result, halobetasol reduces edema, erythema, and pruritus through its cutaneous effects on vascular dilation and permeability. The initial interaction, however, is due to the drug binding to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cortexolone 17α-propionate (WINLEVI, BREEZULA) is a steroid belonging to the family of cortexolone derivatives. It is a topical and peripherally selective androgen antagonist. WINLEVI is used for the treatment of acne and has completed Phase II clinical trials and Phase III trials. BREEZULA is used for the treatment of androgenic alopecia and is currently undergoing a Phase II trial in the US.
Temsirolimus is an intravenous drug for the treatment of renal cell carcinoma (RCC), developed by Wyeth Pharmaceuticals and approved by the FDA in late May 2007, and was also approved by the European Medicines Agency (EMEA) on November 2007. It is a derivative of sirolimus and is sold as Torisel. Temsirolimus is an inhibitor of mTOR (mammalian target of rapamycin). Temsirolimus binds to an intracellular protein (FKBP-12), and the protein-drug complex inhibits the activity of mTOR that controls cell division. Inhibition of mTOR activity resulted in a G1 growth arrest in treated tumor cells. When mTOR was inhibited, its ability to phosphorylate p70S6k and S6 ribosomal protein, which are downstream of mTOR in the PI3 kinase/AKT pathway was blocked. In in vitro studies using renal cell carcinoma cell lines, temsirolimus inhibited the activity of mTOR and resulted in reduced levels of the hypoxia-inducible factors HIF-1 and HIF-2 alpha, and the vascular endothelial growth factor.
Status:
First approved in 1991

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Prednicarbate is a relatively new topical corticosteroid drug. It is similar in potency to hydrocortisone. It has a favorable benefit-risk ratio, with an inflammatory action similar to that of a medium potency corticosteroid, but with a low potential to cause skin atrophy. DERMATOP Ointment (prednicarbate ointment) 0.1% is a medium potency corticosteroid indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid responsive dermatoses. Like other topical corticosteroids, prednicarbate has anti-inflammatory, anti-pruritic and vasoconstrictive properties. The mechanism of the anti-inflammatory activity of the topical steroids, in general, is unclear. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Prednicarbate has a strong correlation between transactivation and glucocorticoid receptor binding.
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (ABSOLUTE)



Halobetasol Propionate is the propionate salt form of halobetasol, a synthetic corticosteroid with anti-inflammatory, antipruritic, and vasoconstrictor activities. Halobetasol, a topical steroid, diffuses across cell membranes to interact with cytoplasmic corticosteroid receptors located in both the dermal and intradermal cells, thereby activating gene expression of anti-inflammatory proteins mediated via corticosteroid receptor response element. Specifically, this agent induces phospholipase A2 inhibitory proteins, which inhibit the release of arachidonic acid, thereby inhibiting the biosynthesis of potent mediators of inflammation, such as prostaglandins and leukotrienes. As a result, halobetasol reduces edema, erythema, and pruritus through its cutaneous effects on vascular dilation and permeability. The initial interaction, however, is due to the drug binding to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes.
Fluticasone propionate, a medium-potency synthetic corticosteroid, is used topically to relieve inflammatory and pruritic symptoms of dermatoses and psoriasis, intranasally to manage symptoms of allergic and non-allergic rhinitis, and orally for the treatment of asthma. Fluticasone proprionate is marketed under several different brand names such as Flonase®. Fluticasone propionate is also available as a combination product of azelastine hydrochloride and fluticasone propionate called Dymista™. Dymista™ is indicated in patients over 12 years old for symptomatic relief of seasonal allergic rhinitis. Fluticasone propionate binds to the glucocorticoid receptor. Unbound corticosteroids cross the membranes of cells such as mast cells and eosinophils, binding with high affinity to glucocorticoid receptors (GR). The results include alteration of transcription and protein synthesis, a decreased release of leukocytic acid hydrolases, reduction in fibroblast proliferation, prevention of macrophage accumulation at inflamed sites, reduction of collagen deposition, interference with leukocyte adhesion to the capillary wall, reduction of capillary membrane permeability and subsequent edema, reduction of complement components, inhibition of histamine and kinin release, and interference with the formation of scar tissue. In the management of asthma, the glucocorticoid receptor complexes down-regulates proinflammatory mediators such as interleukin-(IL)-1, 3, and 5, and up-regulates anti-inflammatory mediators such as IkappaB [inhibitory molecule for nuclear factor kappaB1], IL-10, and IL-12. The antiinflammatory actions of corticosteroids are also thought to involve inhibition of cytosolic phospholipase A2 (through activation of lipocortin-1 (annexin)) which controls the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes.
Ganciclovir is a synthetic acyclic nucleoside analogue of 2'-deoxyguanosine active against cytomegalovirus. Ganciclovir has been shown to be active against cytomegalovirus (CMV) and herpes simplex virus (HSV) in humans. To achieve anti-CMV activity, ganciclovir is phosphorylated first to the monophosphate form by a CMV-encoded (UL97 gene) protein kinase homologue, then to the di- and triphosphate forms by cellular kinases. Ganciclovir triphosphate concentrations may be 100-fold greater in CMV-infected than in uninfected cells, indicating preferential phosphorylation in infected cells. Ganciclovir triphosphate, once formed, persists for days in the CMV-infected cell. Ganciclovir triphosphate is believed to inhibit viral DNA synthesis by (1) competitive inhibition of viral DNA polymerases; and (2) incorporation into viral DNA, resulting in eventual termination of viral DNA elongation. Ganciclovir is indicated for the treatment of CMV retinitis in immunocompromised patients, including patients with acquired immunodeficiency syndrome (AIDS) and for the treatment of acute herpetic keratitis.
Status:
First approved in 1985

Class (Stereo):
CHEMICAL (ABSOLUTE)



CLOBETASOL, a derivative of prednisolone with high glucocorticoid activity and low mineralocorticoid activity. Absorbed through the skin faster than fluocinonide, it is used topically in the treatment of psoriasis but may cause marked adrenocortical suppression. For short-term topical treatment of the inflammatory and pruritic manifestations of moderate to severe corticosteroid-responsive dermatoses of the scalp. Like other topical corticosteroids, clobetasol has anti-inflammatory, antipruritic, and vasoconstrictive properties. It is a very high potency topical corticosteroid that should not be used with occlusive dressings. Topical corticosteroids share anti-inflammatory, antipruritic, and vasoconstrictive properties. The mechanism of the anti-inflammatory activity of topical steroids is unclear. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Initially, however, clobetasol, like other corticosteroids, bind to the glucocorticoid receptor, which complexes, enters the cell nucleus and modifies genetic transcription (transrepression/transactivation).
Dexamethasone acetate (NEOFORDEX®) is the acetate salt form of dexamethasone, which is a synthetic glucocorticoid; it combines high anti-inflammatory effects with low mineralocorticoid activity. At high doses (e.g. 40 mg), it reduces the immune response. Dexamethasone acetate (NEOFORDEX®) is indicated in adults for the treatment of symptomatic multiple myeloma in combination with other medicinal products. Dexamethasone has been shown to induce multiple myeloma cell death (apoptosis) via a down-regulation of nuclear factor-κB activity and an activation of caspase-9 through second mitochondria-derived activator of caspase (Smac; an apoptosis promoting factor) release. Prolonged exposure was required to achieve maximum levels of apoptotic markers along with increased caspase-3 activation and DNA fragmentation. Dexamethasone also down-regulated anti apoptotic genes and increased IκB-alpha protein levels. Dexamethasone apoptotic activity is enhanced by the combination with thalidomide or its analogues and with proteasome inhibitor (e.g. bortezomib).