U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Status:
First approved in 1974

Class (Stereo):
CHEMICAL (RACEMIC)



Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
First approved in 1967
Source:
PROPRANOLOL HYDROCHLORIDE by BAXTER HLTHCARE CORP
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Propranolol is a nonselective, beta-adrenergic receptor-blocking agent possessing no other autonomic nervous system activity. At dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. Among the factors that may be involved in contributing to the antihypertensive action include: (1) decreased cardiac output, (2) inhibition of renin release by the kidneys, and (3) diminution of tonic sympathetic nerve outflow from vasomotor centers in the brain. Although total peripheral resistance may increase initially, it readjusts to or below the pretreatment level with chronic use of propranolol. Effects of propranolol on plasma volume appear to be minor and somewhat variable. In angina pectoris, propranolol generally reduces the oxygen requirement of the heart at any given level of effort by blocking the catecholamine-induced increases in the heart rate, systolic blood pressure, and the velocity and extent of myocardial contraction. Propranolol may increase oxygen requirements by increasing left ventricular fiber length, end diastolic pressure, and systolic ejection period. The net physiologic effect of beta-adrenergic blockade is usually advantageous and is manifested during exercise by delayed onset of pain and increased work capacity. Propranolol exerts its antiarrhythmic effects in concentrations associated with beta-adrenergic blockade, and this appears to be its principal antiarrhythmic mechanism of action. In dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. The significance of the membrane action in the treatment of arrhythmias is uncertain. The mechanism of the anti-migraine effect of propranolol has not been established. Propranolol is indicated in the management of hypertension. It may be used alone or used in combination with other antihypertensive agents, particularly a thiazide diuretic. Also is indicated to decrease angina frequency and increase exercise tolerance in patients with angina pectoris; for the prophylaxis of common migraine headache. In addition, is used to improve NYHA functional class in symptomatic patients with hypertrophic subaortic stenosis. Due to the high penetration across the blood–brain barrier, propranolol causes sleep disturbances such as insomnia and vivid dreams, and nightmares. Dreaming (rapid eye movement sleep, REM) was reduced and increased awakening.
Status:
First approved in 1950
Source:
Trigesic by Squibb
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Acetaminophen, also known as paracetamol, is commonly used for its analgesic and antipyretic effects. Its therapeutic effects are similar to salicylates, but it lacks anti-inflammatory, antiplatelet, and gastric ulcerative effects. Acetaminophen (USAN) or Paracetamol (INN) is a widely used analgesic and antipyretic drug that is used for the relief of fever, headaches, and other minor aches and pains. It is a major ingredient in numerous cold and flu medications and many prescription analgesics. It is extremely safe in standard doses, but because of its wide availability, deliberate or accidental overdoses are not uncommon. Acetaminophen, unlike other common analgesics such as aspirin and ibuprofen, has no anti-inflammatory properties or effects on platelet function, and it is not a member of the class of drugs known as non-steroidal anti-inflammatory drugs or NSAIDs. At therapeutic doses, acetaminophen does not irritate the lining of the stomach nor affect blood coagulation, kidney function, or the fetal ductus arteriosus (as NSAIDs can). Acetaminophen is thought to act primarily in the CNS, increasing the pain threshold by inhibiting both isoforms of cyclooxygenase, COX-1, COX-2, and COX-3 enzymes involved in prostaglandin (PG) synthesis. Unlike NSAIDs, acetaminophen does not inhibit cyclooxygenase in peripheral tissues and, thus, has no peripheral anti-inflammatory affects. Acetaminophen indirectly blocks COX, and that this blockade is ineffective in the presence of peroxides. This might explain why acetaminophen is effective in the central nervous system and in endothelial cells but not in platelets and immune cells, which have high levels of peroxides. Studies also report data suggesting that acetaminophen selectively blocks a variant of the COX enzyme that is different from the known variants COX-1 and COX-2. This enzyme is now referred to as COX-3. Its exact mechanism of action is still poorly understood, but future research may provide further insight into how it works. The antipyretic properties of acetaminophen are likely due to direct effects on the heat-regulating centers of the hypothalamus resulting in peripheral vasodilation, sweating and hence heat dissipation.
Status:
US Approved OTC
Source:
21 CFR 343.13(b) internal analgesic:rheumatologic aspirin (buffered)
Source URL:
First marketed in 1899
Source:
Aspirin by Friedr. Bayer & Co., Elberfeld, Germany
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aspirin is a nonsteroidal anti-inflammatory drug. Aspirin is unique in this class of drugs because it irreversibly inhibits both COX-1 and COX-2 activity by acetylating a serine residue (Ser529 and Ser516, respectively) positioned in the arachidonic acid-binding channel, thus inhibiting the synthesis of prostaglandins and reducing the inflammatory response. The drug is used either alone or in combination with other compounds for the treatment of pain, headache, as well as for reducing the risk of stroke and heart attacks in patients with brain ischemia and cardiovascular diseases.