U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 47 results


Class (Stereo):
CHEMICAL (ABSOLUTE)

Fluorodopa F-18 is the amino acid analog fluorodopa (FDOPA) labeled with fluorine F 18, a positron-emitting isotope. It is diagnostic PET agent, which has been used for decades in imaging the loss of dopaminergic neurons in Parkinson's disease, and more recently to detect, stage and restage neuroendocrine tumours and to search for recurrence of viable glioma tissue. Fluorodopa F-18 is able to cross the blood-brain barrier and is taken up by brain tumor cells. As uptake is higher in tumor cells, tumors may then be imaged using positron emission tomography (PET). Assessing tumor uptake of FDOPA may be beneficial for diagnosis, localization and in determining further treatment. The clinical usefulness of Fluorodopa F-18 has been evaluated and recognised in France and subsequently in several EU countries. Fluorodopa F-18 was registered in France in 2006. 6-fluoro-(18F)-L-3,4-dihydroxyphenylalanine (FDOPA) is a large, neutral amino acid that is transported into presynaptic neurons, where it is converted by the enzyme aromatic aminoacid decarboxylase [AAAD]) into fluorodopamine-(18F), which subsequently enters cathecholamine-storage vesicles. 6-fluoro(18F)-L-dopa crosses the blood-brain barrier; therefore, when injected into the blood stream, it reaches the dopaminergic cells in the brain and is used by the brain as a precursor for dopamine. This makes it possible to monitor intracerebral synthesis and uptake of dopamine by means of the positron-emitting 6-fluoro(18F)-L-3,4-dihydroxyphenylalanine (FDOPA), in conjunction with externally-placed devices suited for detection of annihilation photons, which progressively led to the most recent positron emission tomography (PET) units. Iasodopa, the commercial preparation of FDOPA that obtained a marketing authorisation in France in November 2006 (which is currently recognised by several other EU countries), is a solution for injection. The activity available at time of administration ranges from 0.1 GBq to 0.8 GBq per vial. The half-life of the radionuclide is 109.8 min with emission of positron radiation (Emax: 0.633 MeV) followed by photon annihilation radiations of 0.511 MeV.

Class (Stereo):
CHEMICAL (ACHIRAL)



Flutemetamol F 18 is a radioactive molecular agent that is intended for use with PET imaging of the brain in adults being evaluated for Alzheimer's disease (AD) and dementia. Flutemetamol F 18 consists of flutemetamol, a thioflavin derivative of Pittsburgh compound B (PiB) labeled with the radioisotope fluorine F18 and it selectively binds to cerebral fibrillar beta-amyloid, a peptide involved in Alzheimer's disease.

Class (Stereo):
CHEMICAL (ACHIRAL)



Florbetapir (18F) (trade name AMYViD; also known as florbetapir-fluorine-18 or 18F-AV-45) is a PET scanning radiopharmaceutical compound containing the radionuclide fluorine-18, recently FDA approved as a diagnostic tool for Alzheimer's disease. Florbetapir, like Pittsburgh compound B (PiB), binds to beta-amyloid, however fluorine-18 has a half-life of 110 minutes, in contrast to PiB's radioactive half life of 20 minutes. Wong et al. found that the longer life allowed the tracer to accumulate significantly more in the brains of people with AD, particularly in the regions known to be associated with beta-amyloid deposits. A negative Amyvid scan indicates sparse to no neuritic plaques, and is inconsistent with a neuropathological diagnosis of AD at the time of image acquisition; a negative scan result reduces the likelihood that a patient’s cognitive impairment is due to AD. A positive Amyvid scan indicates moderate to frequent amyloid neuritic plaques; neuropathological examination has shown this amount of amyloid neuritic plaque is present in patients with AD, but may also be present in patients with other types of neurologic conditions as well as older people with normal cognition. Amyvidis an adjunct to other diagnostic evaluations
Ioflupane I-123 (trade name DaTscan) is a radioiodinated cocaine analogue synthesized from a key starting material Sn FP-CT via oxidative iododestannylation with sodium (123I)-iodide. Ioflupane I-123 binds reversibly with high affinity to the dopamine transporter (DaT) protein, a marker for presynaptic terminals in dopaminergic nigrostriatal neurons. It has been developed as a dopamine transporter imaging agent for single photon emission computed tomography (SPECT) which is claimed to be sensitive enough to differentiate changes in the nigrostriatal dopaminergic system in patients with Parkinsonism and healthy controls. DaTSCAN is unable to discriminate between Parkinson's Disease, Multiple System Atrophy and Progressive Supranuclear Palsy. DaTscan is an adjunct to other diagnostic evaluations. Headache, nausea, vertigo, dry mouth, or dizziness of mild to moderate severity as well as hypersensitivity reactions and injection-site pain have been reported. The DaTscan injection may contain up to 6% of free iodide (iodine 123 or I-123). To decrease thyroid accumulation of I-123, the thyroid gland has to be blocked at least one hour before administration of DaTscan because of the long-term risk for thyroid neoplasia. DaTscan was first approved in the European Union (EU) on July 27, 2000. It is also approved in Israel, Switzerland and in the United States (a total of 33 countries).
IOBENGUANE I-123 (AdreView®) is a radiopharmaceutical agent for gamma-scintigraphy. It is similar in structure to the antihypertensive drug guanethidine and to the neurotransmitter norepinephrine (NE). IOBENGUANE is, therefore, largely subject to the same uptake and accumulation pathways as NE. It is taken up by the NE transporter in adrenergic nerve terminals and stored in the presynaptic storage vesicles. IOBENGUANE accumulates in adrenergically innervated tissues such as the adrenal medulla, salivary glands, heart, liver, spleen, and lungs as well as tumors derived from the neural crest. By labeling IOBENGUANE with the isotope iodine 123 (I-123), it is possible to obtain scintigraphic images of the organs and tissues in which the radiopharmaceutical accumulates. IOBENGUANE I-123 (AdreView®) is indicated for use in the detection of primary or metastatic pheochromocytoma or neuroblastoma. It is also used for scintigraphic assessment of sympathetic innervation of the myocardium by measurement of the heart to mediastinum (H/M) ratio of radioactivity uptake in patients with New York Heart Association (NYHA) class II or class III heart failure and left ventricular ejection fraction (LVEF) ≤ 35%. Among these patients, IOBENGUANE I-123 (AdreView®) may be used to help identify patients with lower one and two-year mortality risks, as indicated by an H/M ratio ≥ 1.6.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

Technetium Tc 99m Bicisate is a Radioactive Diagnostic Agent indicated as an adjunct to conventional computed tomography (CT) or magnetic resonance imaging (MRI) in the localization of stroke in patients in whom stroke has already been diagnosed. Technetium Tc 99m Bicisate is a lipophilic complex with high first-pass extraction fraction and deposition and retention in the brain in proportion to cerebral blood flow. Its radionuclide emissions permit external imaging of the cerebral distribution of the agent, thus allowing the detection of altered regional cerebral perfusion. The retention in the brain of technetium Tc 99m Bicisate results from in vivo metabolism (de-esterification) of the primary complex to polar, less diffusable compounds Technetium Tc-99m Bicisate is metabolized by endogenous enzymes to the mono- and di-acids of Technetium Tc-99m Bicisate that can be detected in blood and urine. Technetium Tc-99m Bicisate is excreted primarily through the kidneys. Within two hours, 50% of the injected dose is excreted and by 24 hours, 74% is found in urine.
Fludeoxyglucose F-18 is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging.
Status:
First approved in 1974

Class (Stereo):
CHEMICAL (ACHIRAL)


XENON XE-133 (Xenon-133) is an isotope of xenon. It is a radionuclide that is inhaled to assess pulmonary function, and to image the lungs. It is also used to image blood flow, particularly in the brain. Xenon Xe 133 diffuses easily, passing through cell membranes and exchanging freely between blood and tissue. It is distributed in the lungs in a manner similar to that of air, thus representing the regions of the lung that are aerated. The gamma photons of xenon Xe 133 can then be employed to obtain counts per minute per lung or region of the lung, or to display their distribution as a scan. Scintigraphs taken during the washout period, as the patient breathes room air, will show any obstruction in the airways as regions of radioactive gas trapping or retention. (In the presence of an abnormal or near normal Tc 99m albumin aggregated perfusion study, a normal ventilation study favors a diagnosis of pulmonary emboli. However, the presence of xenon Xe 133 gas trapping, during washout imaging, in areas of abnormal perfusion, favors a diagnosis of chronic-type obstructive pulmonary disease.)