U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 25 results

Desloratadine is an active, descarboethoxy metabolite of loratadine. It acts by selective inhibition of H1 histamine receptor and thus provides relief to patients with allergic rhinitis and chronic idiopathic urticaria. Desloratadine was approved by FDA and it is currently marketed under the name Clarinex (among the others).
Status:
First approved in 1996

Class (Stereo):
CHEMICAL (RACEMIC)



Fexofenadine is a second-generation, long lasting H1-receptor antagonist (antihistamine) which has a selective and peripheral H1-antagonist action. Histamine is a chemical that causes many of the signs that are part of allergic reactions, such as the swelling of tissues. Histamine is released from histamine-storing cells (mast cells) and attaches to other cells that have receptors for histamine. The attachment of the histamine to the receptors causes the cell to be "activated," releasing other chemicals which produce the effects that we associate with allergy. Fexofenadine blocks one type of receptor for histamine (the H1 receptor) and thus prevents activation of cells by histamine. Unlike most other antihistamines, Fexofenadine does not enter the brain from the blood and, therefore, does not cause drowsiness. Fexofenadine lacks the cardiotoxic potential of terfenadine, since it does not block the potassium channel involved in repolarization of cardiac cells. Fexofenadine is sold under the trade name Allegra among others. ALLEGRA is indicated for the relief of symptoms associated with seasonal allergic rhinitis in adults and children 2 years of age and older.
Levocetirizine dihydrochloride is the R enantiomer of cetirizine hydrochloride, a racemic compound with antihistaminic properties. Levocetirizine is a third-generation non-sedative antihistamine indicated for the relief of symptoms associated with seasonal and perennial allergic rhinitis and uncomplicated skin manifestations of chronic idiopathic urticaria. It was developed from the second-generation antihistamine cetirizine. Levocetirizine was approved by the United States Food and Drug Administration on May 25, 2007 and is marketed under the brand XYZAL. Its principal effects are mediated via selective inhibition of H1 receptors. The antihistaminic activity of levocetirizine has been documented in a variety of animal and human models. In vitro binding studies revealed that levocetirizine has an affinity for the human H1-receptor 2-fold higher than that of cetirizine (Ki = 3 nmol/L vs. 6 nmol/L, respectively). The clinical relevance of this finding is unknown.

Class (Stereo):
CHEMICAL (ACHIRAL)



Loratadine is a derivative of azatadine and a second-generation histamine H1 receptor antagonist used in the treatment of allergic rhinitis and urticaria. Unlike most classical antihistamines (histamine H1 antagonists) it lacks central nervous system depressing effects such as drowsiness. Loratadine competes with free histamine and exhibits specific, selective peripheral H1 antagonistic activity. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms (eg. nasal congestion, watery eyes) brought on by histamine. Loratadine has low affinity for cholinergic receptors and does not exhibit any appreciable alpha-adrenergic blocking activity in-vitro. Loratadine also appears to suppress the release of histamine and leukotrienes from animal mast cells, and the release of leukotrienes from human lung fragments, although the clinical importance of this is unknown.
Cetirizine, a human metabolite of hydroxyzine, is an antihistamine; its principal effects are mediated via selective inhibition of peripheral H1 receptors. It is indicated for the relief of nasal and non-nasal symptoms associated with seasonal or perennial allergic rhinitis, hay fever and chronic idiopathic urticaria. Commonly reported adverse reactions of cetirizine include headache, dry mouth and drowsiness or fatigue. Pharmacokinetic interaction studies with Cetirizine in adults were conducted with pseudoephedrine, antipyrine, ketoconazole, erythromycin and azithromycin. No interactions were observed.
Clemastine is an antihistamine with anticholinergic (drying) and sedative side effects. Clemastine is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. It is used for the relief of symptoms associated with allergic rhinitis such as sneezing, rhinorrhea, pruritus and acrimation. Also for the management of mild, uncomplicated allergic skin manifestations of urticaria and angioedema. Used as self-medication for temporary relief of symptoms associated with the common cold.
Hydroxyzine, a piperazine antihistamine structurally related to buclizine, cyclizine, and meclizine, is used to treat histamine-mediated pruritus or pruritus due to allergy, nausea and vomiting, and, in combination with an opiate agonist, anxiolytic pain. Hydroxyzine is also used as a perioperative sedative and anxiolytic and to manage acute alcohol withdrawal. Hydroxyzine competes with histamine for binding at H1-receptor sites on the effector cell surface, resulting in suppression of histaminic edema, flare, and pruritus. The sedative properties of hydroxyzine occur at the subcortical level of the CNS. Secondary to its central anticholinergic actions, hydroxyzine may be effective as an antiemetic. It is used for symptomatic relief of anxiety and tension associated with psychoneurosis and as an adjunct in organic disease states in which anxiety is manifested.
Methscopolamine bromide is an anticholinergic agent used along with other medications to treat peptic ulcers by reducing stomach acid secretion. Methscopolamine is also commonly used as a drying agent, to dry up post-nasal drip, in cold, irritable bowel syndrome and allergy medications. Methscopolamine binds to M1-M5 isoforms of muscarinic receptors.
Status:
US Approved OTC
Source:
21 CFR 341.12(m) cough/cold:antihistamine triprolidine hydrochloride
Source URL:
First approved in 1958

Class (Stereo):
CHEMICAL (ACHIRAL)



Triprolidine is a first generation histamine H1 antagonist, which in combination with codeine phosphate and pseudoephedrine hydrochloride is sold under brand name TRIACIN-C. TRIACIN-C is indicated for temporary relief of coughs and upper respiratory symptoms, including nasal congestion, associated with allergy or the common cold.
Status:
US Approved OTC
Source:
21 CFR 341.12(e) cough/cold:antihistamine dexchlorpheniramine maleate
Source URL:
First approved in 1958
Source:
Polaramine by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dexchlorpheniramine, the d-isomer of the racemic compound chlorpheniramine, is two times more active than chlorpheniramine. Dexchlorpheniramine does not prevent the release of histamine, but rather, competes with free histamine for binding at the H1-receptor sites, and competitively antagonizes the effects of histamine on H1-receptors in the GI tract, uterus, large blood vessels, and bronchial muscle. Blockade of H1-receptors also suppresses the formation of oedema, flare, and pruritus that result from histaminic activity. Since dexchlorpheniramine binds to central and peripheral H1-receptors, sedative effects are likely to occur. H1-antagonists are structurally similar to anticholinergic agents and therefore possess the potential to exhibit anticholinergic properties of varying degrees. They also have antipruritic effects. Dexchlorpheniramine has high antihistaminic activity, moderate anticholinergic effects and minimal sedative effects. The drug does not possess antiemetic properties.