{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "LiverTox|CNS|Myasthenia|Cholinesterase inhibitor" in comments (approximate match)
Showing 1 - 2 of 2 results
Status:
US Approved Rx
(1973)
Source:
NDA017398
(1973)
Source URL:
First approved in 1955
Source:
NDA009829
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Acquired myasthenia gravis (MG) is a chronic autoimmune disorder of the neuromuscular junction, characterized clinically by muscle weakness and abnormal fatigability on exertion. Current guidelines and recommendations for MG treatment are based largely on clinical experience, retrospective analyses and expert consensus. Pyridostigmine (under the trade names Mestinon (Valeant Pharmaceuticals)), has been used as a treatment for MG for over 50 years and is generally considered safe. It is suitable as a long-term treatment in patients with generalized non-progressive milder disease, and as an adjunctive therapy in patients with severe disease who are also receiving immunotherapy. Pyridostigmine inhibits acetylcholinesterase in the synaptic cleft by competing with acetylcholine for attachment to acetylcholinesterase, thus slowing down the hydrolysis of acetylcholine, and thereby increases efficiency of cholinergic transmission in the neuromuscular junction and prolongs the effects of acetylcholine. The side effects of Mestinon are most commonly related to over dosage and generally are of two varieties, muscarinic and nicotinic. Among those in the former group are nausea, vomiting, diarrhea, abdominal cramps, increased peristalsis, increased salivation, increased bronchial secretions, miosis and diaphoresis. Nicotinic side effects are comprised chiefly of muscle cramps, fasciculation and weakness. Muscarinic side effects can usually be counteracted by atropine, but for reasons shown in the preceding section the expedient is not without danger. As with any compound containing the bromide radical, a skin rash may be seen in an occasional patient. Such reactions usually subside promptly upon discontinuance of the medication.
Status:
US Previously Marketed
Source:
Physostigmine Salicylate U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Physostigmine Salicylate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Physostigmine (Phy) is one of the oldest drug isolated from Calabar beans and successfully used for the treatment of glaucoma in 1864. Since then, it has been widely employed for various therapeutic purposes. Recently, it has gained prominence because of its clinical trials in the treatment of Alzheimer's disease. Physostigmine was used to treat glaucoma. It can be applied topically to the conjunctiva. Phy is also considered to be a potent prophylactic antidote for organophosphate poisoning. It is a reversible cholinesterase (ChE) inhibitor and has a short duration of action. For the last 50 years, numerous authors have shown that pretreatment with Phy would rapidly improve the incapacitating effects of organophosphate intoxication in various animal species. Phy carbamylates to a portion of ChE enzyme and thus protects the enzyme from binding with organophosphate, which are irreversible ChE inhibitors. The carbamylated ChE enzyme decarbamylates to free the enzyme for normal functioning. The rates of decarbamylation of butyrylcholinesterase (BuChE) in plasma and ChE in brain and muscle are different and are related to the half-life of Phy in these tissues. In addition to ChE inhibition, Phy has a direct action on acetylcholine (ACh) receptor ionophore complex by interacting with the ACh-gated cation channels. A cholinesterase inhibitor that is rapidly absorbed through membranes. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity.