U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Suvorexant is a selective dual antagonist of orexin receptors OX1R and OX2R. It has been approved for the treatment of insomnia. The mechanism by which suvorexant exerts its therapeutic effect in insomnia is presumed to be through antagonism of orexin receptors. The orexin neuropeptide signaling system is a central promoter of wakefulness. Blocking the binding of wake-promoting neuropeptides orexin A and orexin B to receptors OX1R and OX2R is thought to suppress wake drive.
Tasimelteon, developed by Vanda Pharmaceuticals Inc under license from Bristol-Myers Squibb Co, is a melatonin receptor agonist. Tasimelteon differs structurally from melatonin and drugs with known melatonin agonist activity, in particular by its distinct aromatic group and linker. Tasimelteon bears also no structural relationship to any other approved active substance. Tasimelteon is presumably acts through activation of MT1 and MT2 G-protein coupled receptors, which are involved primarily in inhibition of neuronal firing and phase shift of circadian rhythms. Tasimelteon is approved for the treatment of Non24-Hour Sleep-Wake Disorder.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ramelteon was approved by the United States (U.S.) in July 2005, and the Japanese Ministry of Health, Labour and Welfare in April 2010. It is currently available in the USA and Japan as ROZEREM and is indicated for the treatment of insomnia characterized by difficulty with sleep onset. In October 7, 2011, Takeda has decided to discontinue the development of ramelteon in Europe for the treatment of insomnia in order to best optimize Takeda’s resources for its research and development activities. Ramelteon is a melatonin receptor agonist with both high affinity for melatonin MT1 and MT2 receptors and selectivity over the MT3 receptor. Ramelteon demonstrates full agonist activity in vitro in cells expressing human MT1 or MT2 receptors, and high selectivity for human MT1 and MT2 receptors compared to the MT3 receptor. The activity of ramelteon at the MT1 and MT2 receptors is believed to contribute to its sleep-promoting properties since these receptors are acted upon by endogenous melatonin and are thought to be involved in the maintenance of the circadian rhythm underlying normal sleep-wake cycles. Ramelteon has no appreciable affinity for the GABA receptor complex or for receptors that bind neuropeptides, cytokines, serotonin, dopamine, noradrenaline, acetylcholine, and opiates.
Eszopiclone is a nonbenzodiazepine hypnotic, pyrrolopyrazine derivative of the cyclopyrrolone class and is indicated for the short-term treatment of insomnia. While Eszopiclone is a hypnotic agent with a chemical structure unrelated to benzodiazepines, barbiturates, or other drugs with known hypnotic properties, it interacts with the gamma-aminobutyric acid-benzodiazepine (GABABZ) receptor complex. Subunit modulation of the GABABZ receptor chloride channel macromolecular complex is hypothesized to be responsible for some of the pharmacological properties of benzodiazepines, which include sedative, anxiolytic, muscle relaxant, and anticonvulsive effects in animal models. Eszopiclone binds selectively to the brain alpha subunit of the GABA A omega-1 receptor. The mechanism of action of Eszopiclone is not completely understood. It is thought that Eszopiclone acts on the benzodiazepine receptors as an agonist and interacts with GABA-receptor complexes. Used for the treatment of insomnia.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dexmedetomide (biologically active dextroisomer of medetomidine) is an alpha2-adrenergic agonist which was approved by FDA for the sedation purposes. Upon administration the drug activates the alpha2 receptors thus inhibiting the release of norepinephrine and terminating the propagation of pain signals. Also it inhibits sympathetic activity and thus can decrease blood pressure and heart rate.
Zaleplon is a nonbenzodiazepine hypnotic from the pyrazolopyrimidine class and is indicated for the short-term treatment of insomnia. While Zaleplon is a hypnotic agent with a chemical structure unrelated to benzodiazepines, barbiturates, or other drugs with known hypnotic properties, it interacts with the gamma-aminobutyric acid-benzodiazepine (GABABZ) receptor complex. Subunit modulation of the GABABZ receptor chloride channel macromolecular complex is hypothesized to be responsible for some of the pharmacological properties of benzodiazepines, which include sedative, anxiolytic, muscle relaxant, and anticonvulsive effects in animal models. Zaleplon also binds selectively to the CNS GABAA-receptor chloride ionophore complex at benzodiazepine(BZ) omega-1 (BZ1, ο1) receptors. Zaleplon exerts its action through subunit modulation of the GABABZ receptor chloride channel macromolecular complex. Zaleplon also binds selectively to the brain omega-1 receptor located on the alpha subunit of the GABA-A/chloride ion channel receptor complex and potentiates t-butyl-bicyclophosphorothionate (TBPS) binding. Zaleplon is marketed under the brand names Sonata, Starnoc, and Andante.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Zolpidem is usually used for the treatment of insomnia as a hypnotic drug. It was also suggested to be effective in the treatment of dystonia in some studies. Zolpidem can be one of useful alternative pharmacological treatments for blepharospasm. Zolpidem interacts with a GABA-BZ receptor complex and shares some of the pharmacological properties of the benzodiazepines. In contrast to the benzodiazepines, which non-selectively bind to and activate all BZ receptor subtypes, zolpidem in vitro binds the BZ1 receptor preferentially with a high affinity ratio of the α1/α5 subunits. This selective binding of zolpidem on the BZ1 receptor is not absolute, but it may explain the relative absence of myorelaxant and anticonvulsant effects in animal studies as well as the preservation of deep sleep in human studies of zolpidem tartrate at hypnotic doses.
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Estazolam, a triazolobenzodiazepine derivative, is an oral hypnotic agent with anticonvulsant, hypnotic, and muscle relaxant properties. It has been shown in some cases to be more potent than diazepam or nitrazepam. Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Used for the short-term management of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakenings. Marketed under the brand names ProSom, Eurodin.
Quazepam is indicated for the treatment of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakenings. Quazepam interact preferentially with the benzodiazepine-1 (BZ1) receptors. Most common adverse reactions (>1%): drowsiness, headache, fatigue, dizziness, dry mouth, dyspepsia. Downward of CAN depressant dose adjustment may be necessary due to additive effects.
Midazolam, previously marketed under the trade name Versed, is a medication used for anesthesia, procedural sedation, trouble sleeping, and severe agitation. Midazolam is a short-acting benzodiazepine central nervous system (CNS) depressant. Pharmacodynamic properties of midazolam and its metabolites, which are similar to those of other benzodiazepines, include sedative, anxiolytic, amnesic and hypnotic activities. Benzodiazepine pharmacologic effects appear to result from reversible interactions with the γ-amino butyric acid (GABA) benzodiazepine receptor in the CNS, the major inhibitory neurotransmitter in the central nervous system. The action of midazolam is readily reversed by the benzodiazepine receptor antagonist, flumazenil. Data from published reports of studies in pediatric patients clearly demonstrate that oral midazolam provides safe and effective sedation and anxiolysis prior to surgical procedures that require anesthesia as well as before other procedures that require sedation but may not require anesthesia. The most commonly reported effective doses range from 0.25 to 1 mg/kg in children (6 months to <16 years). The single most commonly reported effective dose is 0.5 mg/kg. Time to onset of effect is most frequently reported as 10 to 20 minutes. The effects of midazolam on the CNS are dependent on the dose administered, the route of administration, and the presence or absence of other medications.