{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
clindamycin phosphate
to a specific field?
There is one exact (name or code) match for clindamycin phosphate
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(2024)
Source:
NDA217900
(2024)
Source URL:
First approved in 2024
Source:
NDA217900
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2023)
Source:
NDA216956
(2023)
Source URL:
First approved in 2023
Source:
NDA216956
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
APD-334 (Etrasimod) was discovered as part of our internal effort to identify potent, centrally available, functional antagonists of the S1P1 receptor for use as next generation therapeutics for treating multiple sclerosis (MS) and other autoimmune diseases. APD334 is a potent functional antagonist of S1P1 and has a favorable PK/PD profile, producing robust lymphocyte lowering at relatively low plasma concentrations in several preclinical species. This new agent was efficacious in a mouse experimental autoimmune encephalomyelitis (EAE) model of MS and a rat collagen induced arthritis (CIA) model and was found to have appreciable central exposure. APD-334 has therapeutic potential in immune and inflammatory-mediated diseases such as ulcerative colitis, Crohn’s disease, and atopic dermatitis.
Status:
US Approved Rx
(2023)
Source:
NDA217759
(2023)
Source URL:
First approved in 2023
Source:
NDA217759
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Leniolisib (JOENJA®) is an oral selective phosphoinositide 3-kinase-delta (PI3Kdelta) inhibitor being developed by Pharming Group NV in-licensed from Novartis for the treatment of immunodeficiency disorders. Leniolisib inhibits PI3K-delta by blocking the active binding site of PI3K-delta. In cell-free isolated enzyme assays, leniolisib was selective for PI3K-delta over PI3K-alpha (28-fold), PI3K-beta (43-fold), and PI3K-gamma (257-fold), as well as the broader kinome. In cell-based assays, leniolisib reduced pAKT pathway activity and inhibited proliferation and activation of B and T cell subsets. Gain-of-function variants in the gene encoding the p110-delta catalytic subunit or loss of function variants in the gene encoding the p85-alpha regulatory subunit each cause hyperactivity of PI3K-delta. Leniolisib inhibits the signalling pathways that lead to increased production of PIP3, hyperactivity of the downstream mTOR/AKT pathway, and to the dysregulation of B and T cells. In March 2023, leniolisib received its first approval for the treatment of activated PI3Kdelta syndrome (APDS) in adult and paediatric patients 12 years of age and older. Leniolisib is also under regulatory review in European Union for the treatment of APDS. Development of leniolisib for the treatment of Sjögren's syndrome has been discontinued.
Status:
US Approved Rx
(2021)
Source:
NDA213498
(2021)
Source URL:
First approved in 2021
Source:
NDA213498
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ponesimod is an experimental drug for the treatment of multiple sclerosis (MS) graft-versus-host disease and psoriasis. It acts on certain types of white blood cells (lymphocytes) which are involved in the autoimmune attack on myelin seen in multiple sclerosis (MS). Ponesimod is an orally active, reversible, and selective sphingosine-1-phosphate receptor (S1PR1) modulator. The drug is in phase II clinical trial for the treatment of graft-versus-host disease. In addition, the phase III clinical trial comparing ponesimod to teriflunomide in relapsing-remitting MS is ongoing.
Status:
US Approved Rx
(2021)
Source:
NDA214900
(2021)
Source URL:
First approved in 2021
Source:
NDA214900
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ibrexafungerp (BREXAFEMME®) is an orally active triterpenoid antifungal drug being developed by SCYNEXIS, Inc. for the treatment of fungal infections. The inhibition of β-1,3-D glucan synthetase by ibrexafungerp compromises the integrity of fungal cell walls. Ibrexafungerp has been recently approved for the treatment of vulvovaginal candidiasis (VVC), and it is the first novel antifungal drug class to be approved in more than 20 years. Food and Drug Administration's decision was based on positive results from two pivotal phase III studies in which oral ibrexafungerp proved both safe and effective in patients with vulvovaginal candidiasis. Development for the treatment of recurrent VVC and invasive fungal infections is ongoing.
Status:
US Approved Rx
(2020)
Source:
NDA212801
(2020)
Source URL:
First approved in 2020
Source:
NDA212801
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Osilodrostat (INN, USAN) (developmental code name LCI-699) is an orally active, non-steroidal corticosteroid biosynthesis inhibitor which is under development by Novartis for the treatment of Cushing's syndrome and pituitary ACTH hypersecretion (a specific subtype of Cushing's syndrome). Osilodrostat specifically acts as a potent and selective inhibitor of aldosterone synthase (CYP11B2) and at higher dosages of 11β-hydroxylase (CYP11B1). Osilodrostat decreases plasma and urinary aldosterone levels and rapidly corrects hypokalemia, in patients with primary aldosteronism and hypertension. At doses ≥1 mg o.d. Osilodrostat markedly increases 11-deoxycortisol plasma levels and blunts ACTH-stimulated cortisol release in ≈20% of patients, consistent with the inhibition of CYP11B1. In patients with resistant hypertension, Osilodrostat produces a non-significant reduction in blood pressure, possibly due to the increase in 11-deoxycortisol levels and the stimulation of the hypothalamic-pituitary-adrenal feedback axis. Because of the lack of selectivity, poor antihypertensive effect, and short half-life, the development of Osilodrostat as antihypertensive was halted. As of 2017, Osilodrostat is in phase III and phase II clinical trials for the treatment of pituitary ACTH hypersecretion and Cushing's syndrome, respectively.
Status:
US Approved Rx
(2020)
Source:
NDA209899
(2020)
Source URL:
First approved in 2020
Source:
NDA209899
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Ozanimod (previously known as RPC-1063) is a selective immune-inflammatory modulator of the G protein-coupled receptors sphingosine 1-phosphate 1 and 5, which are part of the sphingosine 1-phosphate (S1P) receptor family. Treatment with S1P receptor modulators interferes with S1P signaling and blocks the response of lymphocytes (a type of white blood cell) to exit signals from the lymph nodes, sequestering them within the nodes. The result is a downward modulation of circulating lymphocytes and anti-inflammatory activity by inhibiting cell migration to sites of inflammation. Ozanimod is currently in phase III clinical trials for the treatment of relapsing multiple sclerosis (RMS) and ulcerative colitis, and also in phase II clinical trials to determine whether it is effective in the treatment of Crohn's disease.
Status:
US Approved Rx
(2020)
Source:
NDA213756
(2020)
Source URL:
First approved in 2020
Source:
NDA213756
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Selumetinib (AZD6244 or ARRY-142886) is a potent, selective, and ATP-uncompetitive inhibitor of Ras-Raf-mitogen-activated protein kinase kinase (MEK1/2). This inhibition can prevent ERK activation, disrupt downstream signal transduction, and inhibit cancer cell proliferation and survival. Selumetinib has shown tumour suppressive activity in multiple rodent models of human cancer including melanoma, pancreatic, colon, lung, and breast cancers. AstraZeneca is responsible for development and commercialization of selumetinib.
Status:
US Approved Rx
(2019)
Source:
NDA209884
(2019)
Source URL:
First approved in 2019
Source:
NDA209884
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Siponimod (BAF312) is a dual agonist at the sphingosine-1 phosphate receptors, S1PR1 and S1PR5. The S1P receptor is commonly found on the surface of specific cells residing in the central nervous system (CNS), that are responsible for causing CNS damage that drives loss of function in secondary progressive multiple sclerosis (SPMS). Siponimod (BAF312) enters the brain and by binding to these specific receptors, may prevent the activation of these harmful cells, helping to reduce the loss of physical and cognitive function associated with SPMS.