{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
amiloride
to a specific field?
There is one exact (name or code) match for amiloride
Status:
US Approved Rx
(2009)
Source:
ANDA079133
(2009)
Source URL:
First approved in 1981
Source:
MODURETIC 5-50 by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Amiloride, an antikaliuretic-diuretic agent, is a pyrazine-carbonyl-guanidine that is unrelated chemically to other known antikaliuretic or diuretic agents. It is an antihypertensive, potassium-sparing diuretic that was first approved for use in 1967 and helps to treat hypertension and congestive heart failure. The drug is often used in conjunction with thiazide or loop diuretics. Due to its potassium-sparing capacities, hyperkalemia (high blood potassium levels) are occasionally observed in patients taking amiloride. Amiloride works by inhibiting sodium reabsorption in the distal convoluted tubules and collecting ducts in the kidneys by binding to the amiloride-sensitive sodium channels. This promotes the loss of sodium and water from the body, but without depleting potassium. It is used for as adjunctive treatment with thiazide diuretics or other kaliuretic-diuretic agents in congestive heart failure or hypertension.
Status:
US Approved Rx
(2009)
Source:
ANDA079133
(2009)
Source URL:
First approved in 1981
Source:
MODURETIC 5-50 by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Amiloride, an antikaliuretic-diuretic agent, is a pyrazine-carbonyl-guanidine that is unrelated chemically to other known antikaliuretic or diuretic agents. It is an antihypertensive, potassium-sparing diuretic that was first approved for use in 1967 and helps to treat hypertension and congestive heart failure. The drug is often used in conjunction with thiazide or loop diuretics. Due to its potassium-sparing capacities, hyperkalemia (high blood potassium levels) are occasionally observed in patients taking amiloride. Amiloride works by inhibiting sodium reabsorption in the distal convoluted tubules and collecting ducts in the kidneys by binding to the amiloride-sensitive sodium channels. This promotes the loss of sodium and water from the body, but without depleting potassium. It is used for as adjunctive treatment with thiazide diuretics or other kaliuretic-diuretic agents in congestive heart failure or hypertension.
Status:
US Approved Rx
(1964)
Source:
NDA013174
(1964)
Source URL:
First approved in 1964
Source:
NDA013174
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Triamterene, a relatively weak, potassium-sparing diuretic and antihypertensive, is used in the management of hypokalemia. Triamterene inhibits the epithelial sodium channels on principal cells in the late distal convoluted tubule and collecting tubule, which are responsible for 1-2% of total sodium reabsorption. As sodium reabsorption is inhibited, this increases the osmolarity in the nephron lumen and decreases the osmolarity of the interstitium. Since sodium concentration is the main driving force for water reabsorption, triamterene can achieve a modest amount of diuresis by decreasing the osmotic gradient necessary for water reabsorption from lumen to interstitium. Triamterene also has a potassium-sparing effect. Normally, the process of potassium excretion is driven by the electrochemical gradient produced by sodium reabsorption. As sodium is reabsorbed, it leaves a negative potential in the lumen, while producing a positive potential in the principal cell. This potential promotes potassium excretion through apical potassium channels. By inhibiting sodium reabsorption, triamterene also inhibits potassium excretion.Triamterene is used for the treatment of edema associated with congestive heart failure, cirrhosis of the liver, and the nephrotic syndrome; also in steroid-induced edema, idiopathic edema, and edema due to secondary hyperaldosteronism. Triamterene is maeketed under the trade name Dyrenium.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
INN:idrevloride [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Benzamil is a derivative of amiloride, a potassium sparing diuretic, and is an inhibitor of Na+/H+ and Na+/Ca++ channels. Amiloride works by directly blocking the epithelial sodium channel (ENaC) thereby inhibiting sodium reabsorption in the distal convoluted tubules and collecting ducts in the kidneys (this mechanism is the same for triamterene). This promotes the loss of sodium and water from the body, but without depleting potassium. Benzamil has being shown to attenuate the development of hypertension in Dahl salt-sensitive rats. Benzamil has been studied as a possible treatment for cystic fibrosis. Benzamil was suggested to be a useful sodium channel blocker for the long-term treatment of the biochemical defect in the lungs of patients with cystic fibrosis.