U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 821 - 830 of 993 results

(+)-DDMS (R-Didesmethylsibutramine , (R)-DDMS) is one of sibutramine active metabolites. Sibutramine is widely used in the treatment of obesity. Sibutramine acts by inhibiting the reuptake of serotonin and noradrenaline in synapses, thereby enhancing both satiety and energy expenditure. In preclinical models (R)-enantiomer of Didesmethylsibutramine was clearly more potent than the (S)-enantiomers and (R)-didesmethylsibutramine shows some activity in all tests. (S)-didesmethylsibutramine affected locomotor behavior and the Porsolt test but appeared to be completely inactive on food intake. R-Didesmethylsibutramine is more potent than sibutramine in depressing food intake and decreasing body weight, suggest that these enantioselective metabolites might be safer and more effective than sibutramine as potential therapies for obesity.
1-(2-methoxyphenyl)piperazine is an effective blocker of striatal dopaminergic receptors in rat brain and is apparently the simplest chemical structure known to exert dopaminergic blocking activity. It is exhibited pronounced antihypertensive and weak sympatholytic activities in experimental animals. Blood pressure was also lowered in hypertensive patients and this effect was sometimes accompanied by a strong sedation, and after large repeated doses, by disorientation and stupor. In a filter paper bioassay 1-(2-methoxyphenyl)piperazine demonstrated acaricidal activity. 1-(2-methoxyphenyl)piperazine is a building block of many serotonergic and dopaminergic agents. Some of them have antidepressant activity.
1-(2-methoxyphenyl)piperazine is an effective blocker of striatal dopaminergic receptors in rat brain and is apparently the simplest chemical structure known to exert dopaminergic blocking activity. It is exhibited pronounced antihypertensive and weak sympatholytic activities in experimental animals. Blood pressure was also lowered in hypertensive patients and this effect was sometimes accompanied by a strong sedation, and after large repeated doses, by disorientation and stupor. In a filter paper bioassay 1-(2-methoxyphenyl)piperazine demonstrated acaricidal activity. 1-(2-methoxyphenyl)piperazine is a building block of many serotonergic and dopaminergic agents. Some of them have antidepressant activity.
5-(2-Aminopropyl)benzofuran (5-APB) is an empathogenic psychoactive compound of the substituted benzofuran, substituted amphetamine and substituted phenethylamine classes. 5-(2-Aminopropyl)benzofuran is a serotonin–norepinephrine–dopamine reuptake inhibitor and serotonin–norepinephrine–dopamine releasing agent. The toxicity and long-term health effects of recreational 5-APB use do not seem to have been studied in any scientific context and the exact toxic dosage is unknown/ 5-(2-Aminopropyl)benzofuran 's high affinity for the 5-HT2b receptor makes it likely that 5-APB would be cardiotoxic with long-term use, as seen in other 5-HT2B agonists such as fenfluramine and MDMA.
(-)-DDMS (S-Didesmethylsibutramine, (S)-DDMS) is one of sibutramine active metabolites. Sibutramine is widely used in the treatment of obesity. Sibutramine acts by inhibiting the reuptake of serotonin and noradrenaline in synapses, thereby enhancing both satiety and energy expenditure. In preclinical models (S)-Didesmethylsibutramine affected locomotor behavior and the Porsolt test but appeared to be completely inactive on food intake. (S)-enantiomers of didesmethylsibutramine may, to some extent, contribute to sibutramine’s side effect profile.
4-Methoxymethamphetamine (PMMA, para-Methoxymethamphetamine) is a stimulant and psychedelic drug closely related to the amphetamine-class serotonergic drug para-methoxyamphetamine (PMA). Little is known about the pharmacological properties, metabolism, and toxicity of 4-Methoxymethamphetamine. Because of its structural similarity to para-methoxyamphetamine, which has known toxicity in humans, it is thought to have considerable potential to cause harmful side effects or death in overdose. In the early 2010s, a number of deaths in users of the drug MDMA were linked to misrepresented tablets and capsules of 4-Methoxymethamphetamine. In 2010–2013, a cluster of 29 fatal poisonings related to the toxic designer drug 4-Methoxymethamphetamine was revealed in Norway. The toxicity of PMMA is regarded as substantially higher than for amphetamine, methamphetamine, and MDMA, as indicated by 131 fatal and 31 nonfatal poisonings associated with the abuse of 4-Methoxymethamphetamine worldwide. The toxicity of 4-Methoxymethamphetamine is positively correlated with the 4-Methoxymethamphetamine dose and the blood drug level, but the existing literature indicates that certain human subjects may have an increased risk of 4-Methoxymethamphetamine toxicity. 4-Methoxymethamphetamine, like PMA most likely acts as a selective serotonin releasing agent (SSRA) with weak effects on dopamine and norepinephrine transporters. However, relative to MDMA, it is considerably less effective as a serotonin releaser with properties more akin to a reuptake inhibitor in comparison. It evokes robust hyperthermia while producing only modest hyperactivity and serotonergic neurotoxicity, substantially lower than that caused by MDMA.
Songorine is a diterpenoid alkaloid which can be isolated from the genus Aconitum. Songorin has demonstrated anti-inflammatory, anti-anxiolytic and the ability to promote wound healing. The Anti-anxiolytic properties appear to be linked to the agonistic activity of the Dopamine D2 receptor as shown in rat hippocampal slices. The wound healing effect is the result of songorine's ability to stimulate the development of mesenchymal progenitor cells, although the exact mechanism of action remains unclear.