U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 13408 results

Cabozantinib (development code name XL184; marketed under the trade name Cometriq) is an orally bioavailable, small molecule receptor tyrosine kinase (RTK) inhibitor with potential antineoplastic activity. Cabozantinib strongly binds to and inhibits several RTKs, which are often overexpressed in a variety of cancer cell types, including hepatocyte growth factor receptor (MET), RET (rearranged during transfection), vascular endothelial growth factor receptor types 1 (VEGFR-1), 2 (VEGFR-2), and 3 (VEGFR-3), mast/stem cell growth factor (KIT), FMS-like tyrosine kinase 3 (FLT-3), TIE-2 (TEK tyrosine kinase, endothelial), tropomyosin-related kinase B (TRKB) and AXL. This may result in an inhibition of both tumor growth and angiogenesis, and eventually lead to tumor regression. Cabozantinib was granted orphan drug status by the U.S. Food and Drug Administration (FDA) in January 2011. It is currently undergoing clinical trials for the treatment of prostate, bladder, ovarian, brain, melanoma, breast, non-small cell lung, pancreatic, hepatocellular and kidney cancers.
Tofacitinib is an orally available inhibitor of Janus kinases (JAK), with immunomodulatory and anti-inflammatory activities. Upon administration, tofacitinib binds to JAK and prevents the activation of the JAK-signal transducers and activators of transcription (STAT) signaling pathway. This may decrease the production of pro-inflammatory cytokines, such as interleukin (IL)-6, -7, -15, -21, interferon-alpha and -beta, and may prevent both an inflammatory response and the inflammation-induced damage caused by certain immunological diseases. JAK kinases are intracellular enzymes involved in signaling pathways affecting hematopoiesis, immunity and inflammation. Tofacitinib was discovered and developed by the National Institutes of Health and Pfizer. Besides rheumatoid arthritis, tofacitinib has also been studied in clinical trials for the prevention of organ transplant rejection, and the treatment of psoriasis and ulcerative colitis. Patients treated with tofacitinib (XELJANZ) are at increased risk for developing serious infections that may lead to hospitalization or death and adverse reactions. Most patients who developed these infections were taking concomitant immunosuppressants such as methotrexate or corticosteroids.
Regorafenib (trade name Stivarga) is an orally bioavailable small molecule with potential antiangiogenic and antineoplastic activities. Regorafenib binds to and inhibits vascular endothelial growth factor receptors (VEGFRs) 2 and 3, and Ret, Kit, PDGFR and Raf kinases, which may result in the inhibition of tumor angiogenesis and tumor cell proliferation. VEGFRs are receptor tyrosine kinases that play important roles in tumor angiogenesis; the receptor tyrosine kinases RET, KIT, and PDGFR, and the serine/threonine-specific Raf kinase are involved in tumor cell signaling. In in vivo models, regorafenib demonstrated anti-angiogenic activity in a rat tumor model, and inhibition of tumor growth as well as anti-metastatic activity in several mouse xenograft models including some for human colorectal carcinoma. Since 2009 it was studied as a potential treatment option in multiple tumor types. Stivarga is approved by FDA to treat two different tumor types: metastatic colorectal cancer in patients who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF therapy, and, if KRAS wild type, an anti-EGFR therapy (approved in 2012) and to treat patients with locally advanced, unresectable or metastatic gastrointestinal stromal tumor who have been previously treated with imatinib mesylate and sunitinib malate (approved in 2013).
Bedaquiline (trade name Sirturo, code names TMC207 and R207910) is a diarylquinoline anti-tuberculosis drug, which was discovered by a team led by Koen Andries at Janssen Pharmaceutica. When it was approved by the FDA on the 28th December 2012, it was the first new medicine to fight TB in more than forty years, and is specifically approved to treat multi-drug-resistant tuberculosis. Bedaquiline is a diarylquinoline antimycobacterial drug that inhibits the proton pump of mycobacterial ATP (adenosine 5'-triphosphate) synthase, an enzyme that is essential for the generation of energy in Mycobacterium tuberculosis. Bacterial death occurs as a result of bedaquiline.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Mirabegron (trade name Myrbetriq in the US and Betmiga in Europe) is a drug for the treatment of overactive bladder (OAB). It was developed by Astellas Pharma and was approved in the United States in July 2012. Originally developed as a treatment for diabetes, the development of mirabegron was later refocused to OAB. Mirabegron is an orally bioavailable agonist of the human beta-3 adrenergic receptor (ADRB3), with muscle relaxing, neuroprotective and potential antineoplastic activities. Upon oral administration, mirabegron binds to and activates ADRB3, which leads to smooth muscle relaxation. Mirabegron also restores sympathetic stimulation in mesenchymal stem cell (MSC) niches, inhibits JAK2-mutated hematopoietic stem cell (HSC) expansion and blocks the progression of myeloproliferative neoplasms (MPNs). Lack of sympathetic stimulation of the MSC and HSC niche is associated with the development of MPNs.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Carfilzomib is an epoxomicin derivate with potential antineoplastic activity. Kyprolis (carfilzomib's trade name) is a proteasome inhibitor that is indicated for the treatment of patients with relapsed or refractory multiple myeloma who have received one or more lines of therapy as a single agent or in combination with dexamethasone or with lenalidomide plus dexamethasone. Carfilzomib is made up of four modified peptides. It irreversibly and selectively binds to N-terminal threonine-containing active sites of the 20S proteasome, the proteolytic core particle within the 26S proteasome. This 20S core has 3 catalytic active sites: the chymotrypsin, trypsin, and caspase-like sites. Inhibition of the chymotrypsin-like site by carfilzomib (β5 and β5i subunits) is the most effective target in decreasing cellular proliferation, ultimately resulting in cell cycle arrest and apoptosis of cancerous cells. At higher doses, carfilzomib will inhibit the trypsin-and capase-like sites. Inhibition of proteasome-mediated proteolysis results in an accumulation of polyubiquinated proteins, which may lead to cell cycle arrest, induction of apoptosis, and inhibition of tumor growth.
Ruxolitinib (trade names Jakafi and Jakavi, by Incyte Pharmaceuticals and Novartis) is a drug for the treatment of intermediate or high-risk myelofibrosis, a type of myeloproliferative disorder that affects the bone marrow. It is also being investigated for the treatment of other types of cancer (such as lymphomas and pancreatic cancer), for polycythemia vera, for plaque psoriasis, and for alopecia areata. Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) known to be associated with dysregulated JAK1 and JAK2 signaling. Ruxolitinib is a Janus-associated kinase (JAK) inhibitor with potential antineoplastic and immunomodulating activities. Ruxolitinib specifically binds to and inhibits protein tyrosine kinases JAK 1 and 2, which may lead to a reduction in inflammation and an inhibition of cellular proliferation. The JAK-STAT (signal transducer and activator of transcription) pathway plays a key role in the signaling of many cytokines and growth factors and is involved in cellular proliferation, growth, hematopoiesis, and the immune response; JAK kinases may be upregulated in inflammatory diseases, myeloproliferative disorders, and various malignancies. In a mouse model of JAK2V617F-positive MPN, ruxolitinib prevented splenomegaly, preferentially decreased JAK2V617F mutant cells in the spleen and decreased circulating inflammatory cytokines (eg, TNF-α, IL-6). Ruxolitinib was initially synthesized at Incyte Corporation that acquired the rights to develop and commercialize the drug in US. Incyte amended its Collaboration and License Agreement with Novartis, granting Novartis exclusive research, development and commercialization rights for ruxolitinib outside the U.S.
Abiraterone acetate (trade name Zytiga) is a prodrug to the abiraterone, steroidal compound with antiandrogen activity and a 17 α-hydroxylase/C17,20-lyase (CYP17) inhibitor. It is indicated in combination with prednisone for the treatment of patients with metastatic castration-resistant prostate cancer. Abiraterone acetate is converted in vivo to abiraterone which inhibits CYP17, enzyme expressed in testicular, adrenal, and prostatic tumor tissues and required for androgen biosynthesis. Administration of this agent may suppress testosterone production by both the testes and the adrenals to castrate-range levels. Androgen sensitive prostatic carcinoma responds to treatment that decreases androgen levels. Androgen deprivation therapies, such as treatment with GnRH agonists or orchiectomy, decrease androgen production in the testes but do not affect androgen production by the adrenals or in the tumor.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Deferiprone (trade name Ferriprox) is an iron chelator indicated for the treatment of patients with transfusional iron overload due to thalassemia syndromes when current chelation therapy is inadequate. Deferiprone is an orally bioavailable bidentate ligand with iron chelating activity. Deferiprone binds to iron in a 3:1 (ligand:iron) molar ratio. By binding to iron, deferiprone is able to remove excess iron from the body. All the adverse effects of deferiprone are considered reversible, controllable and manageable. These include agranulocytosis with frequency of about 0.6%, neutropenia 6%, musculoskeletal and joint pains 15%, gastrointestinal complains 6% and zinc deficiency 1%.
Vilazodone is a serotonergic antidepressant. The mechanism of the antidepressant effect of vilazodone is not fully understood but is thought to be related to its inhancement of serotonergic activity in the CNS through selective inhibition of serotonin reuptake. Vilazodone is also a partial agonist at serotonergic 5-HT1A receptors; however, the net result of this action on serotonergic transmission and its role in vilazodone’s antidepressant effect are unknown. The side effects include activation of mania/hypomania in patients with bipolar disorder, seizures can occur with treatment in patients with a seizure disorder.